Skip to main content

Breast Cancer and Lipid Metabolism

  • Chapter
  • First Online:
Lipidomics in Health & Disease

Part of the book series: Translational Bioinformatics ((TRBIO,volume 14))

Abstract

Alteration of lipid metabolism plays a critical role in the development of many types of cancer including breast cancer. Lipid metabolism can be regulated by a variety of signaling pathways with proliferative stimuli, apoptotic stimuli or environment changes under physiological, pathophysiological or therapeutic conditions. On the other hand, many lipids and lipid intermediate metabolites are also important signaling molecules involved in cell signaling that regulate cell proliferation, differentiation, apoptosis and migration as well as responses to drug treatment. In physiological condition, lipid metabolism (anabolism and catabolism) is tightly regulated by signaling network in the cell under designed path to growth, proliferation, differentiation and migration. Dysregulation of lipid metabolism under pathological condition leads to alteration of lipid profiles and accumulation of some “bad” lipids which can cause cell overgrowth and hyper-proliferation such as cancer and cell death such as tissue injury (Fig. 8.3). This chapter focuses on the emerging understanding of the role of lipid metabolic pathway in breast carcinogenesis and tumor progression. The update information indicates that the modulation of lipid metabolism can potentially be exploited to prevent breast cancer and enhance efficacy of breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ChoK:

Choline kinase

DG:

diacylglycerol

ER:

estrogen receptor

FAS:

fatty acid synthase

FIPI:

5-Fluoro-2-indolyl des-chlorohalopemide

HER:

human epidermal growth factor receptor

HMG-CoA:

3-hydroxyl-3-methyl glutaryl-coenzyme A

HMGCR:

3-hydroxyl-3-methyl glutaryl-coenzyme A reductase

JNK:

c-Jun N-terminal kinase

LPA:

lysophosphatidic acid

LPC:

lysophosphatidylcholine

LXR:

liver X receptors

MAPK:

mitogen-activated protein kinases

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PI-3-K:

PI-3-kinase

PI-3-P:

PI-3-phoshpate

PI-3,4-P2:

PI-3,4-phoshpates

PI-3,4,5-P3:

PI-3,4,5-phoshpates

PLD:

phospholipase D

PR:

progesterone receptor

PUFA:

polyunsaturated fatty acids

ROS:

reactive oxygen species

SFA:

saturated fatty acids

SPM:

sphingomyelin

SREBP:

sterol regulatory element binding protein

TG:

triacylglycerol

References

  • Adraskela K, Veisaki E, Koutsilieris M, Philippou A. Physical exercise positively influences breast cancer evolution. Clin Breast Cancer. 2017;S1526–8209(16):30357–3.

    Google Scholar 

  • Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst. 2011;103:1461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alo’ PL, Visca P, Marci A, Mangoni A, Botti C, Di Tondo U. Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer. 1996;77:474–82.

    Article  PubMed  Google Scholar 

  • Arlauckas SP, Kumar M, Popov AV, Poptani H, Delikatny EJ. Near infrared fluorescent imaging of choline kinase alpha expression and inhibition in breast tumors. Oncotarget. 2017;8:16518–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Augustin LS, Libra M, Crispo A, Grimaldi M, De Laurentiis M, Rinaldo M, et al. Low glycemic index diet, exercise and vitamin D to reduce breast cancer recurrence (DEDiCa): design of a clinical trial. BMC Cancer. 2017;17:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basso LGM, Mendes LFS, Costa-Filho AJ. The two sides of a lipid-protein story. Biophys Rev. 2016;8:179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloomfield HE, Koeller E, Greer N, MacDonald R, Kane R, Wilt TJ. Effects on health outcomes of a mediterranean diet with no restriction on fat intake: a systematic review and meta-analysis. Ann Intern Med. 2016;165:491–500.

    Article  PubMed  Google Scholar 

  • Bond P. Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals. Nutr Metab (Lond). 2017;14:12.

    Article  CAS  Google Scholar 

  • Borgquist S, Giobbie-Hurder A, Ahern TP, Garber JE, Colleoni M, Láng I, et al. Cholesterol, cholesterol-lowering medication use, and breast cancer outcome in the BIG 1-98 study. J Clin Oncol. 2017;35:1179–88.

    Article  CAS  PubMed  Google Scholar 

  • Bougnoux P, Giraudeau B, Couet C. Diet, cancer, and the lipidome. Cancer Epidemiol Biomark Prev. 2006;15:416–21.

    Article  CAS  Google Scholar 

  • Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev. 2014;66:1033–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caiazza F, Harvey BJ, Thomas W. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth. Mol Endocrinol. 2010;24:953–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, et al. Breast cancer growth prevention by statins. Cancer Res. 2006;66:8707–14.

    Article  CAS  PubMed  Google Scholar 

  • Cauley JA, McTiernan A, Rodabough RJ, LaCroix A, Bauer DC, Margolis KL, et al. Statin use and breast cancer: prospective results from the Women’s Health Initiative. J Natl Cancer Inst. 2006;98:700–7.

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4:127–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles AG, Han TY, Liu YY, Hansen N, Giuliano AE, Cabot MC. Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmacol. 2001;47:444–50.

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Rizwan A, Jiang L, Bhujwalla ZM, Glunde K. Molecular effects of doxorubicin on choline metabolism in breast cancer. Neoplasia. 2017;19:617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane CA, Panner A, Murray JC, Wilson SP, Xu H, Chen L, et al. PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Oncogene. 2009;28:306–12.

    Article  CAS  PubMed  Google Scholar 

  • De Craene JO, Bertazzi DL, Bär S, Friant S. Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int J Mol Sci. 2017;18:E634.

    Article  CAS  PubMed  Google Scholar 

  • Dieli-Conwright CM, Lee K, Kiwata JL. Reducing the risk of breast cancer recurrence: an evaluation of the effects and mechanisms of diet and exercise. Curr Breast Cancer Rep. 2016;8:139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dória ML, Cotrim Z, Macedo B, Simões C, Domingues P, Helguero L, et al. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells. Breast Cancer Res Treat. 2012;133:635–48.

    Article  CAS  PubMed  Google Scholar 

  • Dória ML, Cotrim CZ, Simões C, Macedo B, Domingues P, Domingues MR, et al. Lipidomic analysis of phospholipids from human mammary epithelial and breast cancer cell lines. J Cell Physiol. 2013;228:457–68.

    Article  CAS  PubMed  Google Scholar 

  • dos Santos CR, Domingues G, Matias I, Matos J, Fonseca I, de Almeida JM, et al. LDL-cholesterol signaling induces breast cancer proliferation and invasion. Lipids Health Dis. 2014;13:16.

    Article  CAS  PubMed  Google Scholar 

  • Esslimani-Sahla M, Thezenas S, Simony-Lafontaine J, Kramar A, Lavaill R, Chalbos D, et al. Increased expression of fatty acid synthase and progesterone receptor in early steps of human mammary carcinogenesis. Int J Cancer. 2007;120:224–9.

    Article  CAS  PubMed  Google Scholar 

  • Estévez-Braun A, Ravelo AG, Pérez-Sacau E, Lacal JC. A new family of choline kinase inhibitors with antiproliferative and antitumor activity derived from natural products. Clin Transl Oncol. 2015;17:74–84.

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I. Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease. J Bioenerg Biomembr. 2009;41:425–31.

    Article  CAS  PubMed  Google Scholar 

  • Foster DA, Salloum D, Menon D, Frias MA. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J Biol Chem. 2014;289:22583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan R, Mahankali M, Alter G, Gomez-Cambronero J. Two sites of action for PLD2 inhibitors: the enzyme catalytic center and an allosteric, phosphoinositide biding pocket. Biochim Biophys Acta. 2015;1851:261–72.

    Article  CAS  PubMed  Google Scholar 

  • Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011a;11:835–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011b;11:835–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425–30.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths WJ, Abdel-Khalik J, Yutuc E, Morgan AH, Gilmore I, Hearn T, et al. Cholesterolomics: an update. Anal Biochem. 2017;524:56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossmann ME, Mizuno NK, Dammen ML, Schuster T, Ray A, Cleary MP. Eleostearic acid inhibits breast cancer proliferation by means of an oxidation-dependent mechanism. Cancer Prev Res (Phila). 2009;2:879–86.

    Article  CAS  Google Scholar 

  • Henkels KM, Boivin GP, Dudley ES, Berberich SJ, Gomez-Cambronero J. Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene. 2013;32:5551–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilvo M, Denkert C, Lehtinen L, Müller B, Brockmöller S, Seppänen-Laakso T, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011;71:3236–45.

    Article  CAS  PubMed  Google Scholar 

  • Holzer RG, Park EJ, Li N, Tran H, Chen M, Choi C, et al. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell. 2011;147:173–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Freter C. Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci. 2015;16:924–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Freter C. Cholesterol lowering in cancer prevention and therapy. (Huang C, Freter C, editors). InTech Open Science/Open Minds; 2016:107–29.

    Google Scholar 

  • Huang H, Frohman MA. Lipid signaling on the mitochondrial surface. Biochim Biophys Acta. 2009;1791:839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Hydo LM, Liu S, Miller RT. Activation of choline kinase by extracellular Ca2+ is Ca(2+)-sensing receptor, Gα12 and Rho-dependent in breast cancer cells. Cell Signal. 2009;21:1894–900.

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Bruggeman LA, Hydo LM, Miller RT. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp Cell Res. 2012;318:1075–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio E, Caramujo MJ, Cecchetti S, Spadaro F, Carpinelli G, Canese R, et al. Key players in choline metabolic reprograming in triple-negative breast cancer. Front Oncol. 2016;6:205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jatoi A, Suman VJ, Schaefer P, Block M, Loprinzi C, Roche P, et al. A phase II study of topical ceramides for cutaneous breast cancer. Breast Cancer Res Treat. 2003;80:99–104.

    Article  CAS  PubMed  Google Scholar 

  • Jones SF, Infante JR. Molecular pathways: fatty acid synthase. Clin Cancer Res. 2015;21:5434–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Tian L, Jung M, Choi SK, Sun Y, Kim H, et al. Downregulation of choline kinase-alpha enhances autophagy in tamoxifen-resistant breast cancer cells. PLoS One. 2015a;10:e0141110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Tian L, Jung M, Choi SK, Sun Y, Kim H, et al. Downregulation of choline kinase-alpha enhances autophagy in tamoxifen-resistant breast Cancer cells. PLoS One. 2015b;10:e0141110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimbung S, Lettiero B, Feldt M, Bosch A, Borgquist S. High expression of cholesterol biosynthesis genes is associated with resistance to statin treatment and inferior survival in breast cancer. Oncotarget. 2016;7:59640–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kloudova A, Guengerich FP, Soucek P. The role of oxysterols in human cancer. Trends Endocrinol Metab. 2017;28:485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolovou G, Kolovou V, Vasiliadis I, Wierzbicki AS. Mikhailidis DP (2011) ideal lipid profile and genes for an extended life span. Curr Opin Cardiol. 2011;26(4):348–55.

    Article  PubMed  Google Scholar 

  • Lacal JC, Campos JM. Preclinical characterization of RSM-932A, a novel anticancer drug targeting the human choline kinase alpha, an enzyme involved in increased lipid metabolism of cancer cells. Mol Cancer Ther. 2015;14:31–9.

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009;19:R1046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawler S, Maher G, Brennan M, Goode A, Reeves MM, Eakin E. Get healthy after breast cancer – examining the feasibility, acceptability and outcomes of referring breast cancer survivors to a general population telephone-delivered program targeting physical activity, healthy diet and weight loss. Support Care Cancer. 2017;25:1953–62.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 1997;272:3137–40.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ma DW. The role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients. 2014;6:5184–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Shi Y, Giranda VL, Luo Y. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway sensitizes MDA-MB468 human breast cancer cells to cerulenin-induced apoptosis. Mol Cancer Ther. 2006;5:494–501.

    Article  CAS  PubMed  Google Scholar 

  • Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, et al. Role of cholesterol in the development and progression of breast cancer. Am J Pathol. 2011;178:402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ly D, Forman D, Ferlay J, Brinton LA, Cook MB. An international comparison of male and female breast cancer incidence rates. Int J Cancer. 2013;132:1918–26.

    Article  CAS  PubMed  Google Scholar 

  • Mansourian M, Haghjooy-Javanmard S, Eshraghi A, Vaseghi G, Hayatshahi A, Thomas J. Statins use and risk of breast cancer recurrence and death: a systematic review and meta-analysis of observational studies. J Pharm Pharm Sci. 2016;19:72–81.

    Article  PubMed  Google Scholar 

  • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77.

    Article  CAS  PubMed  Google Scholar 

  • Menendez JA, Lupu R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogene. 2017;6:e299.

    Article  CAS  Google Scholar 

  • Menendez JA, Vellon L, Lupu R. Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Ann Oncol. 2005;16:1253–67.

    Article  CAS  PubMed  Google Scholar 

  • Morad SA, Levin JC, Shanmugavelandy SS, Kester M, Fabrias G, Bedia C, et al. Ceramide – antiestrogen nanoliposomal combinations–novel impact of hormonal therapy in hormone-insensitive breast cancer. Mol Cancer Ther. 2012;11:2352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori N, Wildes F, Kakkad S, Jacob D, Solaiyappan M, Glunde K, et al. Choline kinase-α protein and phosphatidylcholine but not phosphocholine are required for breast cancer cell survival. NMR Biomed. 2015;28:1697–706.

    Article  CAS  PubMed  Google Scholar 

  • Mullen TD, Obeid LM. Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anti Cancer Agents Med Chem. 2012;12:340–63.

    Article  CAS  Google Scholar 

  • Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342:1094–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh DY, Ahn SJ, Lee RA, Park IA, Kim JH, Suh PG, et al. Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett. 2000;161:207–14.

    Article  CAS  PubMed  Google Scholar 

  • Panini SR, Sinensky MS. Mechanisms of oxysterol-induced apoptosis. Curr Opin Lipidol. 2001;12:529–33.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A. 2007;104:6511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun. 2002;296(3):580.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez de Molina A, Gutiérrez R, Ramos MA, Silva JM, Silva J, Bonilla F, et al. Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene. 2002;21:4317–22.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez de Molina A, Báñez-Coronel M, Gutiérrez R, Rodríguez-González A, Olmeda D, Megías D, et al. Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res. 2004;64:6732–9.

    Article  PubMed  Google Scholar 

  • Raza S, Ohm JE, Dhasarathy A, Schommer J, Roche C, Hammer KD, et al. The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Mol Cell Biochem. 2015;410:187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman F, Shanmugasundaram P, Schrey MP. Fenretinide stimulates redox-sensitive ceramide production in breast cancer cells: potential role in drug-induced cytotoxicity. Br J Cancer. 2004;91:1821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross J, Najjar AM, Sankaranarayanapillai M, Tong WP, Kaluarachchi K, Ronen SM. Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine. Mol Cancer Ther. 2008a;7:2556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross J, Najjar AM, Sankaranarayanapillai M, Tong WP, Kaluarachchi K, Ronen SM. Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine. Mol Cancer Ther. 2008b;7:2556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80:361–554.

    Article  CAS  PubMed  Google Scholar 

  • Scott SA, Selvy PE, Buck JR, Cho HP, Criswell TL, Thomas AL, et al. Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat Chem Biol. 2009;5:108–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senchenkov A, Litvak DA, Cabot MC. Targeting ceramide metabolism--a strategy for overcoming drug resistance. J Natl Cancer Inst. 2001;93:347–57.

    Article  CAS  PubMed  Google Scholar 

  • Shah T, Wildes F, Penet MF, Winnard PT Jr, Glunde K, Artemov D, et al. Choline kinase overexpression increases invasiveness and drug resistance of human breast cancer cells. NMR Biomed. 2010;23:633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Baumgart T. Dynamics and instabilities of lipid bilayer membrane shapes. Adv Colloid Interf Sci. 2014;208:76–88.

    Article  CAS  Google Scholar 

  • Sieri S, Chiodini P, Agnoli C, Pala V, Berrino F, Trichopoulou A, et al. Dietary fat intake and development of specific breast cancer subtypes. J Natl Cancer Inst. 2014;106:pii:dju068.

    Article  Google Scholar 

  • Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas R, et al. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res. 2016;18:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Ngcoya N, Kumar V. A review of the recent developments in synthetic anti-breast Cancer agents. Anti Cancer Agents Med Chem. 2016;16:668–85.

    Article  CAS  Google Scholar 

  • Siskind LJ, Kolesnick RN, Colombini M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 2002;277:26796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slebe F, Rojo F, Vinaixa M, García-Rocha M, Testoni G, Guiu M, et al. FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth. Nat Commun. 2016;7:11199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struckhoff AP, Bittman R, Burow ME, Clejan S, Elliott S, Hammond T, et al. Novel ceramide analogs as potential chemotherapeutic agents in breast cancer. J Pharmacol Exp Ther. 2004;309:523–32.

    Article  CAS  PubMed  Google Scholar 

  • Su W, Yeku O, Olepu S, Genna A, Park JS, Ren H, et al. 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol Pharmacol. 2009;75:437–46.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB. Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. Biochim Biophys Acta. 2014;1843:1839–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Chen Y, Jiang H, Nie D. The role of short-chain fatty acids in orchestrating two types of programmed cell death in colon cancer. Autophagy. 2011;7:235–7.

    Article  PubMed  Google Scholar 

  • Thiébaut AC, Kipnis V, Chang SC, Subar AF, Thompson FE, Rosenberg PS, et al. Dietary fat and postmenopausal invasive breast cancer in the National Institutes of Health-AARP Diet and Health Study cohort. J Natl Cancer Inst. 2007;99:451–62.

    Article  PubMed  Google Scholar 

  • Todor IN, Lukyanova NY, Chekhun VF. The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells. Exp Oncol. 2012;34:97–100.

    PubMed  CAS  Google Scholar 

  • Trousil S, Kaliszczak M, Schug Z, Nguyen QD, Tomasi G, Favicchio R, et al. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget. 2016;7:37103–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Martin A, Colomer R, Brunet J, Lupu R, Menendez JA. Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif. 2008;41:59–85.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 2017;16:132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Chen X, Luan H, Gao D, Lin S, Cai Z, et al. Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion. Rapid Commun Mass Spectrom. 2016;30:533–42.

    Article  CAS  PubMed  Google Scholar 

  • Weiss L, Hoffmann GE, Schreiber R, Andres H, Fuchs E, Körber E, et al. Fatty-acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty-acid synthase. Biol Chem Hoppe Seyler. 1986;367:905–12.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yu DD, Yan DL, Hu Y, Chen D, Liu Y, et al. Liver X receptor as a drug target for the treatment of breast cancer. Anti-Cancer Drugs. 2016;27:373–82.

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Lu SH, Yuan YJ. Cerium elicitor-induced phosphatidic acid triggers apoptotic signaling development in Taxus cuspidata cell suspension cultures. Chem Phys Lipids. 2009;159:13–20.

    Article  CAS  PubMed  Google Scholar 

  • Yip SC, El-Sibai M, Hill KM, Wu H, Fu Z, Condeelis JS, et al. Over-expression of the p110beta but not p110alpha isoform of PI 3-kinase inhibits motility in breast cancer cells. Cell Motil Cytoskeleton. 2004;59:180–8.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Long YC, Shen HM. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy. 2015;11:1711–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Zhou H, Zhao X, Wolff DW, Tu Y, Liu H, et al. Phosphatidic acid mediates the targeting of tBid to induce lysosomal membrane permeabilization and apoptosis. J Lipid Res. 2012;53:2102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfa Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, C., Li, Y., Tu, Y., Freter, C.E. (2018). Breast Cancer and Lipid Metabolism. In: Wang, X., Wu, D., Shen, H. (eds) Lipidomics in Health & Disease. Translational Bioinformatics, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-0620-4_8

Download citation

Publish with us

Policies and ethics