Skip to main content

Urinary Lipidomics

  • Chapter
  • First Online:
Lipidomics in Health & Disease

Part of the book series: Translational Bioinformatics ((TRBIO,volume 14))

Abstract

Urinary lipidomics has become an attractive arena in current biomedical research and life science because the urine is an ideal source for discovery of non-invasive biomarkers for human diseases. However, urinary lipidome profiling is not too simple because lipid concentrations in the urine are relatively low and high levels of salts and other charged compounds can interfere with lipidome analysis. In this chapter, we provide a technical overview of mass spectrometry (MS)-based urinary lipidomics and its technical challenges, such as exosome isolation, lipid extraction, isomer/isobar identification and clinical applications, for the future success of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alharbi FJ, Geberhiwot T, Hughes DA, Ward DG. A novel rapid MALDI-TOF-MS-based method for measuring urinary Globotriaosylceramide in Fabry patients. J Am Soc Mass Spectrom. 2016;27:719–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrios C, Spector TD, Menni C. Blood, urine and faecal metabolite profiles in the study of adult renal disease. Arch Biochem Biophys. 2016;589:81–92.

    Article  PubMed  CAS  Google Scholar 

  • Becker GJ, Nicholls K. Lipiduria – with special relevance to Fabry disease. Clin Chem Lab Med. 2015;53(Suppl 2):s1465–70.

    PubMed  CAS  Google Scholar 

  • Bielow C, Mastrobuoni G, Orioli M, Kempa S. On mass ambiguities in high-resolution shotgun lipidomics. Anal Chem. 2017;89:2986–94.

    Article  PubMed  CAS  Google Scholar 

  • Boonla C, Youngjermchan P, Pumpaisanchai S, Tungsanga K, Tosukhowong P. Lithogenic activity and clinical relevance of lipids extracted from urines and stones of nephrolithiasis patients. Urol Res. 2011;39:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Bowman AP, Abzalimov RR, Shvartsburg AA. Broad separation of isomeric lipids by high-resolution differential ion mobility spectrometry with tandem mass spectrometry. J Am Soc Mass Spectrom. 2017;28:1552–61.

    Article  PubMed  CAS  Google Scholar 

  • Byeon SK, Kim JY, Lee JS, Moon MH. Variations in plasma and urinary lipids in response to enzyme replacement therapy for Fabry disease patients by nanoflow UPLC-ESI-MS/MS. Anal Bioanal Chem. 2016;408:2265–74.

    Article  PubMed  CAS  Google Scholar 

  • Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt Chem. 2014;61:192–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, Star RA. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;292:F1657–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Guo H, Gustafson S, Heubner B, Lamb K, Li S, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L. United States renal data system 2011 annual data report: atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis. 2012;59(A7):e1-A7,420.

    Google Scholar 

  • Damen CW, Isaac G, Langridge J, Hankemeier T, Vreeken RJ. Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res. 2014;55:1772–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Boccio P, Raimondo F, Pieragostino D, Morosi L, Cozzi G, Sacchetta P, Magni F, Pitto M, Urbani A. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes. Electrophoresis. 2012;33:689–96.

    Article  PubMed  CAS  Google Scholar 

  • Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res. 2011;50:115–31.

    Article  PubMed  CAS  Google Scholar 

  • Erkan E, Zhao X, Setchell K, Devarajan P. Distinct urinary lipid profile in children with focal segmental glomerulosclerosis. Pediatr Nephrol. 2016;31:581–8.

    Article  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA. A comprehensive classification system for lipids. J Lipid Res. 2005;46:839–61.

    Article  PubMed  CAS  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50(Suppl):S9–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferris ME, Gipson DS, Kimmel PL, Eggers PW. Trends in treatment and outcomes of survival of adolescents initiating end-stage renal disease care in the United States of America. Pediatr Nephrol. 2006;21:1020–6.

    Article  PubMed  Google Scholar 

  • Fuchs B. Analysis of phospolipids and glycolipids by thin-layer chromatography-matrix-assisted laser desorption and ionization mass spectrometry. J Chromatogr A. 2012;1259:62–73.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs B, Schiller J, Suss R, Schurenberg M, Suckau D. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem. 2007;389:827–34.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs B, Suss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 2010;49:450–75.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs B, Suss R, Teuber K, Eibisch M, Schiller J. Lipid analysis by thin-layer chromatography – a review of the current state. J Chromatogr A. 2011;1218:2754–74.

    Article  PubMed  CAS  Google Scholar 

  • Fuller M, Sharp PC, Rozaklis T, Whitfield PD, Blacklock D, Hopwood JJ, Meikle PJ. Urinary lipid profiling for the identification of fabry hemizygotes and heterozygotes. Clin Chem. 2005;51:688–94.

    Article  PubMed  CAS  Google Scholar 

  • Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz JM, Binnington B, Lindemann D, Lingwood CA, Shevchenko A, Schroeder C, Simons K. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J Cell Biol. 2012;196:213–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graessler, J., Mehnert, C. S., Schulte, K. M., Bergmann, S., Strauss, S., Bornstein, T. D., Licinio, J., Wong, M. L., Birkenfeld, A. L., and Bornstein, S. R. (2017) Urinary Lipidomics: evidence for multiple sources and sexual dimorphism in healthy individuals. Pharmacogen J.18(2): 331-339

    Google Scholar 

  • Grove KJ, Voziyan PA, Spraggins JM, Wang S, Paueksakon P, Harris RC, Hudson BG, Caprioli RM. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J Lipid Res. 2014;55:1375–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan XL, Wenk MR. Targeted and non-targeted analysis of membrane lipids using mass spectrometry. Methods Cell Biol. 2012;108:149–72.

    PubMed  CAS  Google Scholar 

  • Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005;24:367–412.

    Article  PubMed  CAS  Google Scholar 

  • Hines KM, Herron J, Xu L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. J Lipid Res. 2017;58:809–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Zhou Z, Nie H, Bai Y, Liu H. Recent advances of chromatography and mass spectrometry in lipidomics. Anal Bioanal Chem. 2011;399:243–9.

    Article  PubMed  CAS  Google Scholar 

  • Massey KA, Nicolaou A. Lipidomics of oxidized polyunsaturated fatty acids. Free Radic Biol Med. 2013;59:45–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merchant ML, Powell DW, Wilkey DW, Cummins TD, Deegens JK, Rood IM, McAfee KJ, Fleischer C, Klein E, Klein JB. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl. 2010;4:84–96.

    Article  PubMed  CAS  Google Scholar 

  • Min HK, Lim S, Chung BC, Moon MH. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal Bioanal Chem. 2011;399:823–30.

    Article  PubMed  CAS  Google Scholar 

  • Mirzoyan K, Baiotto A, Dupuy A, Marsal D, Denis C, Vinel C, Sicard P, Bertrand-Michel J, Bascands JL, Schanstra JP, Klein J, Saulnier-Blache JS. Increased urinary lysophosphatidic acid in mouse with subtotal nephrectomy: potential involvement in chronic kidney disease. J Physiol Biochem. 2016;72:803–12.

    Article  PubMed  CAS  Google Scholar 

  • Mohr NM, Harland KK, Crabb V, Mutnick R, Baumgartner D, Spinosi S, Haarstad M, Ahmed A, Schweizer M, Faine B. Urinary squamous epithelial cells do not accurately predict urine culture contamination, but may predict urinalysis performance in predicting bacteriuria. Acad Emerg Med. 2016;23:323–30.

    Article  PubMed  Google Scholar 

  • Monteiro M, Moreira N, Pinto J, Pires-Luis AS, Henrique R, Jeronimo C, Bastos ML, Gil AM, Carvalho M, Guedes d P. GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. J Cell Mol Med. 2017;21:2092–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowling TK, Mather AR, Thiyagarajan T, Hernandez-Corbacho MJ, Powers TW, Jones EE, Snider AJ, Oates JC, Drake RR, Siskind LJ. Renal glycosphingolipid metabolism is dysfunctional in lupus nephritis. J Am Soc Nephrol. 2015;26:1402–13.

    Article  PubMed  CAS  Google Scholar 

  • Okemoto K, Maekawa K, Tajima Y, Tohkin M, Saito Y. Cross-classification of human urinary Lipidome by sex, age, and body mass index. PLoS One. 2016;11:e0168188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 2017;12:797–813.

    Article  PubMed  CAS  Google Scholar 

  • Paglia G, Kliman M, Claude E, Geromanos S, Astarita G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem. 2015;407:4995–5007.

    Article  PubMed  CAS  Google Scholar 

  • Pradere JP, Klein J, Gres S, Guigne C, Neau E, Valet P, Calise D, Chun J, Bascands JL, Saulnier-Blache JS, Schanstra JP. LPA1 receptor activation promotes renal interstitial fibrosis. J Am Soc Nephrol. 2007;18:3110–8.

    Article  PubMed  CAS  Google Scholar 

  • Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev. 2003;22:332–64.

    Article  PubMed  CAS  Google Scholar 

  • Raffield LM, Hsu FC, Cox AJ, Carr JJ, Freedman BI, Bowden DW. Predictors of all-cause and cardiovascular disease mortality in type 2 diabetes: diabetes heart study. Diabetol Metab Syndr. 2015;7:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rancoule C, Pradere JP, Gonzalez J, Klein J, Valet P, Bascands JL, Schanstra JP, Saulnier-Blache JS. Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opin Investig Drugs. 2011;20:657–67.

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Mozurkewich EL, Sen A, Vahratian AM, Ferreri TG, Morse AN, Djuric Z. Total serum fatty acid analysis by GC-MS: assay validation and serum sample stability. Curr Pharm Anal. 2013;9:331–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rockwell HE, Gao F, Chen EY, McDaniel J, Sarangarajan R, Narain NR, Kiebish MA. Dynamic assessment of functional Lipidomic analysis in human urine. Lipids. 2016;51:875–86.

    Article  PubMed  CAS  Google Scholar 

  • Rood IM, Deegens JK, Merchant ML, Tamboer WP, Wilkey DW, Wetzels JF, Klein JB. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int. 2010;78:810–6.

    Article  PubMed  CAS  Google Scholar 

  • Saulnier-Blache JS, Feigerlova E, Halimi JM, Gourdy P, Roussel R, Guerci B, Dupuy A, Bertrand-Michel J, Bascands JL, Hadjadj S, Schanstra JP. Urinary lysophopholipids are increased in diabetic patients with nephropathy. J Diabetes Complicat. 2017;31:1103–8.

    Article  PubMed  Google Scholar 

  • Schiller J, Suss R, Arnhold J, Fuchs B, Lessig J, Muller M, Petkovic M, Spalteholz H, Zschornig O, Arnold K. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res. 2004;43:449–88.

    Article  PubMed  CAS  Google Scholar 

  • Schiller J, Suss R, Fuchs B, Muller M, Zschornig O, Arnold K. MALDI-TOF MS in lipidomics. Front Biosci. 2007;12:2568–79.

    Article  PubMed  CAS  Google Scholar 

  • Skotland T, Ekroos K, Kauhanen D, Simolin H, Seierstad T, Berge V, Sandvig K, Llorente A. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur J Cancer. 2017;70:122–32.

    Article  PubMed  CAS  Google Scholar 

  • Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Subramaniam S. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–32.

    Article  PubMed  CAS  Google Scholar 

  • Svensson MK, Cederholm J, Eliasson B, Zethelius B, Gudbjornsdottir S. Albuminuria and renal function as predictors of cardiovascular events and mortality in a general population of patients with type 2 diabetes: a nationwide observational study from the Swedish National Diabetes Register. Diab Vasc Dis Res. 2013;10:520–9.

    Article  PubMed  Google Scholar 

  • Taki T. TLC-blot (far-eastern blot) and its application to functional Lipidomics. Methods Mol Biol. 2015;1314:219–41.

    Article  PubMed  Google Scholar 

  • Tam ZY, Ng SP, Tan LQ, Lin CH, Rothenbacher D, Klenk J, Boehm BO. Metabolite profiling in identifying metabolic biomarkers in older people with late-onset type 2 diabetes mellitus. Sci Rep. 2017;7:4392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor DD, Zacharias W, Gercel-Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 2011;728:235–46.

    Article  PubMed  CAS  Google Scholar 

  • Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3, Unit.

    Google Scholar 

  • Thomas MC, Mitchell TW, Harman DG, Deeley JM, Nealon JR, Blanksby SJ. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal Chem. 2008;80:303–11.

    Article  PubMed  CAS  Google Scholar 

  • Thongboonkerd V. Current status of renal and urinary proteomics: ready for routine clinical application? Nephrol Dial Transplant. 2010;25:11–6.

    Article  PubMed  Google Scholar 

  • Tipthara P, Thongboonkerd V. Differential human urinary lipid profiles using various lipid-extraction protocols: MALDI-TOF and LIFT-TOF/TOF analyses. Sci Rep. 2016;6:33756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Touboul D, Roy S, Germain DP, Baillet A, Brion F, Prognon P, Chaminade P, Laprevote O. Fast fingerprinting by MALDI-TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease. Anal Bioanal Chem. 2005;382:1209–16.

    Article  PubMed  CAS  Google Scholar 

  • Tran TH, Hughes J, Greenfeld C, Pham JT. Overview of current and alternative therapies for idiopathic membranous nephropathy. Pharmacotherapy. 2015;35:396–411.

    Article  PubMed  CAS  Google Scholar 

  • Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik R, Webb IK, Deng L, Garimella SV, Prost SA, Ibrahim YM, Baker ES, Smith RD. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int J Mol Sci. 2017;18:183.

    Google Scholar 

  • Yang JS, Lee JC, Byeon SK, Rha KH, Moon MH. Size dependent Lipidomic analysis of urinary exosomes from patients with prostate Cancer by flow field-flow fractionation and Nanoflow liquid chromatography-tandem mass spectrometry. Anal Chem. 2017;89:2488–96.

    Article  PubMed  CAS  Google Scholar 

  • Zhao YY, Vaziri ND, Lin RC. Lipidomics: new insight into kidney disease. Adv Clin Chem. 2015;68:153–75.

    Article  PubMed  Google Scholar 

  • Zhao M, Li M, Yang Y, Guo Z, Sun Y, Shao C, Li M, Sun W, Gao Y. A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep. 2017;7:3024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Mahidol University research grant and the Thailand Research Fund (IRN60W0004 and IRG5980006).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tipthara, P., Thongboonkerd, V. (2018). Urinary Lipidomics. In: Wang, X., Wu, D., Shen, H. (eds) Lipidomics in Health & Disease. Translational Bioinformatics, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-0620-4_7

Download citation

Publish with us

Policies and ethics