Skip to main content

Metabolomics of Immunity and Its Clinical Applications

  • Chapter
  • First Online:
Lipidomics in Health & Disease

Part of the book series: Translational Bioinformatics ((TRBIO,volume 14))

  • 663 Accesses

Abstract

Metabolomics refers to the quantitative analysis of all metabolites in the organism. It studies the correlation between metabolites and physiological statues. Immune cells include all the cells that are involved in an immune response or related to the process, such as lymphocytes, dendritic cells, monocytes/macrophages, etc. focusing on metabolic status of immune cells is of great significance to understanding the pathogenesis of disease, the curative effect and prevention of diseases. This article briefly introduces the meaning of metabolic profiling, the research methods and application of metabolic profiling on immune cell metabolism research, and the future development of metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Elheiga L, et al. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997;272(16):10669–77.

    Article  PubMed  CAS  Google Scholar 

  • Abu-Elheiga L, et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001;291(5513):2613–6.

    Article  PubMed  CAS  Google Scholar 

  • Abu-Elheiga L, et al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A. 2003;100(18):10207–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmadian M, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 2011;13(6):739–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allenspach EJ, et al. Absence of functional fetal regulatory T cells in humans causes in utero organ-specific autoimmunity. J Allergy Clin Immunol. 2017;140(2):616.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Amiel E, et al. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J Immunol. 2012;189(5):2151–8.

    Article  PubMed  CAS  Google Scholar 

  • Amiel E, et al. Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J Immunol. 2014;193(6):2821–30.

    Article  PubMed  CAS  Google Scholar 

  • Anderson RA, et al. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc Natl Acad Sci U S A. 1994;91(7):2718–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrejeva G, Rathmell JC. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 2017;26(1):49–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aune TM, Collins PL, Chang S. Epigenetics and T helper 1 differentiation. Immunology. 2009;126(3):299–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baitsch L, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Investig. 2011;121(6):2350–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beckonert O, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–703.

    Article  PubMed  CAS  Google Scholar 

  • Beleggia R, et al. Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat (Triticum durum Desf.) grain. J Cereal Sci. 2013;57(2):183–92.

    Article  CAS  Google Scholar 

  • Bensinger SJ, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008;134(1):97–111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berod L, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20(11):1327–33.

    Article  PubMed  CAS  Google Scholar 

  • Bostrom P, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol. 2006;26(8):1871–6.

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40.

    Article  PubMed  CAS  Google Scholar 

  • Burkart EM, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117(12):3930–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Calder PC, et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr. 2013;109(Suppl 1):S1–34.

    Article  PubMed  Google Scholar 

  • Campbell FM, et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem. 2002;277(6):4098–103.

    Article  PubMed  CAS  Google Scholar 

  • Carroll KC, Viollet B, Suttles J. AMPKalpha1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. J Leukoc Biol. 2013;94(6):1113–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakrabarti P, et al. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes. 2010;59(4):775–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakrabarti P, et al. SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J Lipid Res. 2011;52(9):1693–701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chanda PK, et al. Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol Pharmacol. 2010;78(6):996–1003.

    Article  PubMed  CAS  Google Scholar 

  • Chang CH, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chimenti MS, et al. Metabolic profiling of human CD4+cells following treatment with methotrexate and anti-TNF-alpha infliximab. Cell Cycle. 2013;12(18):3025–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinetti G, et al. Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages. Circ Res. 2003;92(2):212–7.

    Article  PubMed  CAS  Google Scholar 

  • Daval M, et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem. 2005;280(26):25250–7.

    Article  PubMed  CAS  Google Scholar 

  • Dentin R, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem. 2004;279(19):20314–26.

    Article  PubMed  CAS  Google Scholar 

  • Du H, et al. Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. Hum Mol Genet. 1998;7(9):1347–54.

    Article  PubMed  CAS  Google Scholar 

  • Du H, et al. Lysosomal acid lipase deficiency: correction of lipid storage by adenovirus-mediated gene transfer in mice. Hum Gene Ther. 2002;13(11):1361–72.

    Article  PubMed  CAS  Google Scholar 

  • Dubland JA, Francis GA. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front Cell Dev Biol. 2015;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn WB, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83.

    Article  PubMed  CAS  Google Scholar 

  • Enerback S, et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387(6628):90–4.

    Article  PubMed  CAS  Google Scholar 

  • Falvo JV, et al. Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol. 2013;118:37–128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finck BN, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002;109(1):121–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Floess S, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5(2):e38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5(11):844–52.

    Article  PubMed  CAS  Google Scholar 

  • Frauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16(6):769–77.

    Article  PubMed  CAS  Google Scholar 

  • Furuta E, et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 2008;68(4):1003–11.

    Article  PubMed  CAS  Google Scholar 

  • Galic S, et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest. 2011;121(12):4903–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauthier MS, et al. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem. 2008;283(24):16514–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghesquiere B, et al. Metabolism of stromal and immune cells in health and disease. Nature. 2014;511(7508):167–76.

    Article  PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807–26.

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    Article  PubMed  CAS  Google Scholar 

  • Graner E, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 2004;5(3):253–61.

    Article  PubMed  CAS  Google Scholar 

  • Haemmerle G, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med. 2011;17(9):1076–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horejsi V. Lipid rafts and their roles in T-cell activation. Microbes Infect. 2005;7(2):310–6.

    Article  PubMed  CAS  Google Scholar 

  • Hossain F, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 2015;3(11):1236–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 2010;33(5):469–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang SC, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014a;15(9):846–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, et al. Kidney tissue targeted metabolic profiling of glucocorticoid-induced osteoporosis and the proposed therapeutic effects of Rhizoma Drynariae studied using UHPLC/MS/MS. Biomed Chromatogr. 2014b;28(6):878–84.

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim J, et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology. 2012;143(4):1061–72.

    Article  PubMed  CAS  Google Scholar 

  • Iizuka K, et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A. 2004;101(19):7281–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joseph SB, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 2002;99(11):7604–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kabashima T, et al. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci U S A. 2003;100(9):5107–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaul D. Molecular link between cholesterol, cytokines and atherosclerosis. Mol Cell Biochem. 2001;219(1–2):65–71.

    Article  PubMed  CAS  Google Scholar 

  • Kidani Y, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol. 2013;14(5):489–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim KH. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr. 1997;17:77–99.

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A. 1997;94(9):4318–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klotz L, et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med. 2009;206(10):2079–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koslinski P, et al. Metabolic profiling of pteridines for determination of potential biomarkers in cancer diseases. Electrophoresis. 2011;32(15):2044–54.

    Article  PubMed  CAS  Google Scholar 

  • Kremmyda LS, et al. Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. Part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(3):195–218.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan S, Alden N, Lee K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol. 2015;36:137–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kudo N, et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995;270(29):17513–20.

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 2006;66(12):5977–80.

    Article  PubMed  CAS  Google Scholar 

  • Ladygina N, Martin BR, Altman A. Dynamic palmitoylation and the role of DHHC proteins in T cell activation and anergy. Adv Immunol. 2011;109:1–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lass A, et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 2006;3(5):309–19.

    Article  PubMed  CAS  Google Scholar 

  • Lass A, et al. Lipolysis – a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res. 2011;50(1):14–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latasa MJ, et al. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc Natl Acad Sci U S A. 2000;97(19):10619–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lea W, et al. Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids. Biochim Biophys Acta. 2000;1485(2–3):121–8.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270(22):12953–6.

    Article  PubMed  CAS  Google Scholar 

  • Li SZ, et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9(7):e1003123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lian X, et al. Lysosomal acid lipase deficiency causes respiratory inflammation and destruction in the lung. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L801–7.

    Article  PubMed  CAS  Google Scholar 

  • Liang G, et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem. 2002;277(11):9520–8.

    Article  PubMed  CAS  Google Scholar 

  • Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60.

    Article  PubMed  CAS  Google Scholar 

  • Lubke T, Lobel P, Sleat DE. Proteomics of the lysosome. Biochim Biophys Acta. 2009;1793(4):625–35.

    Article  PubMed  CAS  Google Scholar 

  • Magana MM, Osborne TF. Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem. 1996;271(51):32689–94.

    Article  PubMed  CAS  Google Scholar 

  • Malaviya AN. Landmark papers on the discovery of methotrexate for the treatment of rheumatoid arthritis and other systemic inflammatory rheumatic diseases: a fascinating story. Int J Rheum Dis. 2016;19(9):844–51.

    Article  PubMed  Google Scholar 

  • McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997;244(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.

    Article  PubMed  CAS  Google Scholar 

  • Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.

    Article  PubMed  CAS  Google Scholar 

  • Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, et al. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem. 2007;282(2):996–1002.

    Article  PubMed  CAS  Google Scholar 

  • Moon JY, Choi MH, Kim J. Metabolic profiling of cholesterol and sex steroid hormones to monitor urological diseases. Endocr Relat Cancer. 2016;23(10):R455–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller E, et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell. 1998;1(3):465–70.

    Article  PubMed  CAS  Google Scholar 

  • Murray PJ, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Namgaladze D, et al. Inhibition of macrophage fatty acid beta-oxidation exacerbates palmitate-induced inflammatory and endoplasmic reticulum stress responses. Diabetologia. 2014;57(5):1067–77.

    Article  PubMed  CAS  Google Scholar 

  • Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36:413–59.

    Article  PubMed  CAS  Google Scholar 

  • Nwankwo JO, Robbins ME. Peroxisome proliferator-activated receptor- gamma expression in human malignant and normal brain, breast and prostate-derived cells. Prostaglandins Leukot Essent Fatty Acids. 2001;64(4–5):241–5.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan D, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41(1):75–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Odegaard JI, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007;447(7148):1116–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouimet M, et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 2015;125(12):4334–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015;15(1):18–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearce EL, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460(7251):103–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearce EL, et al. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342(6155):1242454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierce SK. Lipid rafts and B-cell activation. Nat Rev Immunol. 2002;2(2):96–105.

    Article  PubMed  CAS  Google Scholar 

  • Puigserver P, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550–5.

    Article  PubMed  CAS  Google Scholar 

  • Radin M, et al. Infliximab Biosimilars in the treatment of inflammatory bowel diseases: a systematic review. BioDrugs. 2017;31(1):37–49.

    Article  PubMed  CAS  Google Scholar 

  • Radner FP, et al. Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J Biol Chem. 2010;285(10):7300–11.

    Article  PubMed  CAS  Google Scholar 

  • Rathmell JC, et al. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell. 2000;6(3):683–92.

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001;13(1):11–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubic T, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9(11):1261–9.

    Article  PubMed  CAS  Google Scholar 

  • Ruderman N, et al. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47(5):699–713.

    Article  PubMed  CAS  Google Scholar 

  • Sag D, et al. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008;181(12):8633–41.

    Article  PubMed  CAS  Google Scholar 

  • Schlosburg JE, et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci. 2010;13(9):1113–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweiger M, et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem. 2006;281(52):40236–41.

    Article  PubMed  CAS  Google Scholar 

  • Sears IB, et al. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 1996;16(7):3410–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen WJ, et al. Functional interaction of hormone-sensitive lipase and perilipin in lipolysis. J Lipid Res. 2009;50(11):2306–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimano H, et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest. 1997;100(8):2115–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin HM, et al. Epigenetic modifications induced by Blimp-1 Regulate CD8(+) T cell memory progression during acute virus infection. Immunity. 2013;39(4):661–75.

    Article  PubMed  CAS  Google Scholar 

  • Silina K, et al. Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother. 2014;63(7):643–62.

    Article  PubMed  CAS  Google Scholar 

  • Singh N, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soga T, et al. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2(5):488–94.

    Article  PubMed  CAS  Google Scholar 

  • Stralfors P, Belfrage P. Phosphorylation of hormone-sensitive lipase by cyclic AMP-dependent protein kinase. J Biol Chem. 1983;258(24):15146–52.

    PubMed  CAS  Google Scholar 

  • Sugimoto M, et al. Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics. 2012;8(4):624–33.

    Article  CAS  Google Scholar 

  • Tan Y, et al. Metabolic profiling reveals therapeutic biomarkers of processed Aconitum Carmichaeli Debx in treating hydrocortisone induced Kidney-Yang deficiency syndrome rats. J Ethnopharmacol. 2014;152(3):585–93.

    Article  PubMed  CAS  Google Scholar 

  • Taschler U, et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem. 2011;286(20):17467–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tvrzicka E, et al. Fatty acids as biocompounds: their role in human metabolism, health and disease--a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(2):117–30.

    Article  PubMed  CAS  Google Scholar 

  • Ufer M, et al. Metabolite profiling in early clinical drug development: current status and future prospects. Expert Opin Drug Metab Toxicol. 2017;13(8):803–6.

    Article  PubMed  Google Scholar 

  • van der Windt GJ, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36(1):68–78.

    Article  PubMed  CAS  Google Scholar 

  • Vats D, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Suppl):S138–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science. 2010;327(5968):1004–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wenes M, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 2016;24(5):701–15.

    Article  PubMed  CAS  Google Scholar 

  • Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 2007;18(4):1437–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolman M. Wolman disease and its treatment. Clin Pediatr (Phila). 1995;34(4):207–12.

    Article  CAS  Google Scholar 

  • Wu X, et al. PD-1(+) CD8(+) T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. Br J Cancer. 2014;111(7):1391–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol. 2006;16(2):115–23.

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang K, et al. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity. 2013;39(6):1043–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao S, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327(5968):1000–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou JY, et al. Serum metabolite profiling of B-cell non-Hodgkin’s lymphoma using UPLC-QTOFMS and GC-TOFMS. Metabolomics. 2014;10(4):677–87.

    Article  CAS  Google Scholar 

  • Zhu MS, Zhang HY, Humphreys WG. Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem. 2011;286(29):25419–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmermann R, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306(5700):1383–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, J., Liu, F., Wu, D. (2018). Metabolomics of Immunity and Its Clinical Applications. In: Wang, X., Wu, D., Shen, H. (eds) Lipidomics in Health & Disease. Translational Bioinformatics, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-0620-4_6

Download citation

Publish with us

Policies and ethics