Skip to main content

Lipidomics in Carotid Artery Stenosis: Further Understanding of Pathology and Treatment

  • Chapter
  • First Online:
Lipidomics in Health & Disease

Part of the book series: Translational Bioinformatics ((TRBIO,volume 14))

  • 663 Accesses

Abstract

Lipidomics, a novel emerging “-omics” technology, focusing on identification and quantification of large-scale lipid molecules in organelle, cell, tissue and organism, provides a comprehensive lipid profile of sample instead of confined molecules and provokes insights into biomedical and healthy study. “-omics” technologies are getting widely used recently in the identification of biomarkers for diagnosis, prediction, and therapy of diseases, among which lipidomics mainly in lipid-related diseases. Besides, lipidomics also plays a role in translational medicine and other medical researches. Many vascular diseases like stenosis are lipid-related, so the application of this novel technology attracts our attention. Among those diseases, we will concentrate on the utility of lipidomics in carotid artery stenosis, of which usual pathology is atherosclerosis being wildly thought due to dyslipidemia. Furthermore, we will also evaluate the techniques used in lipidomics, the data analysis and its combination with other “-omics” technologies. Reflection on its present limitations and prospective in carotid stenosis study is also reviewed and conclusions which might promote further development of the lipidomics are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharjee A, Ament Z, West JA, Stanley E, Griffin JL. Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinform. 2016;17(Suppl 15):37–49. https://doi.org/10.1186/s12859-016-1292-2.

    Article  Google Scholar 

  • Alam R, Yatsu F, Tsui L, Alam S. Receptor-mediated uptake and ‘retroendocytosis’ of high-density lipoproteins by cholesterol-loaded human monocyte-derived macrophages: possible role in enhancing reverse cholesterol transport. Biochim Biophys Acta. 1989;1004(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  • Alewijnse A, Peters S. Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol. 2008;585(2–3):292–302.

    Article  CAS  PubMed  Google Scholar 

  • Ansell B, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, Rahmani S, Mottahedeh R, Dave R, Reddy S, Fogelman A. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108(22):2751–6.

    Article  CAS  PubMed  Google Scholar 

  • Braverman N, Moser A. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 2012;1822(9):1442–52.

    Article  CAS  PubMed  Google Scholar 

  • Brunham L, Kruit J, Iqbal J, Fievet C, Timmins J, Pape T, Coburn B, Bissada N, Staels B, Groen A, Hussain M, Parks J, Kuipers F, Hayden M. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Invest. 2006;116(4):1052–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrdwell WC. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 2001;36(4):327–46.

    Article  CAS  PubMed  Google Scholar 

  • Calcagno C, Mulder WJ, Nahrendorf M, Fayad ZA. Recent highlights in ATVB: systems biology and non-invasive imaging of atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(2):e1–8. https://doi.org/10.1161/atvbaha.115.306350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dang VT, Huang A, Zhong LH, Shi Y, Werstuck GH. Comprehensive plasma Metabolomic analyses of atherosclerotic progression reveal alterations in Glycerophospholipid and sphingolipid metabolism in apolipoprotein E-deficient mice. Sci Rep. 2016;6. https://doi.org/10.1038/srep35037.

  • Demetz E, Schroll A, Auer K, Heim C, Patsch J, Eller P, Theurl M, Theurl I, Theurl M, Seifert M, Lener D, Stanzl U, Haschka D, Asshoff M, Dichtl S, Nairz M, Huber E, Stadlinger M, Moschen A, Li X, Pallweber P, Scharnagl H, Stojakovic T, März W, Kleber M, Garlaschelli K, Uboldi P, Catapano A, Stellaard F, Rudling M, Kuba K, Imai Y, Arita M, Schuetz J, Pramstaller P, Tietge U, Trauner M, Norata G, Claudel T, Hicks A, Weiss G, Tancevski I. The arachidonic acid metabolome serves as a conserved regulator of cholesterol metabolism. Cell Metab. 2014;20(5):787–98. https://doi.org/10.1016/j.cmet.2014.09.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dietz H, Cutting G, Pyeritz R, Maslen C, Sakai L, Corson G, Puffenberger E, Hamosh A, Nanthakumar E, Curristin S. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9.

    Article  CAS  PubMed  Google Scholar 

  • Ekroos K, Jänis M, Tarasov K, Hurme R, Laaksonen R. Lipidomics: a tool for studies of atherosclerosis. Curr Atheroscler Rep. 2010;12(4):273–81. https://doi.org/10.1007/s11883-010-0110-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fagerberg B, Ryndel M, Kjelldahl J, Akyürek L, Rosengren L, Karlström L, Bergström G, Olson F. Differences in lesion severity and cellular composition between in vivo assessed upstream and downstream sides of human symptomatic carotid atherosclerotic plaques. J Vasc Res. 2010;47(3):221–30.

    Article  PubMed  Google Scholar 

  • Futerman A, Hannun Y. The complex life of simple sphingolipids. EMBO Rep. 2004;5(8):777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, McDaniel J, Chen EY, Rockwell HE, Drolet J, Vishnudas VK, Tolstikov V, Sarangarajan R, Narain NR, Kiebish MA. Dynamic and temporal assessment of human dried blood spot MS/MSALL shotgun lipidomics analysis. Nutr Metab. 2017:14. https://doi.org/10.1186/s12986-017-0182-6.

  • Goldin A, Beckman J, Schmidt A, Creager M. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–605.

    Article  CAS  PubMed  Google Scholar 

  • Haase C, Frikke-Schmidt R, Nordestgaard B, Kateifides A, Kardassis D, Nielsen L, Andersen C, Køber L, Johnsen A, Grande P, Zannis V, Tybjaerg-Hansen A. Mutation in APOA1 predicts increased risk of ischaemic heart disease and total mortality without low HDL cholesterol levels. J Intern Med. 2011;270(2):136–46.

    Article  CAS  PubMed  Google Scholar 

  • Han X, Yang K, Gross R. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev. 2012;31(1):134–78.

    Article  CAS  PubMed  Google Scholar 

  • Hannun Y, Obeid L. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50.

    Article  CAS  PubMed  Google Scholar 

  • Harris W, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel L, Appel L, Engler M, Engler M, Sacks F. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation. 2009;119(6):902–7.

    Article  PubMed  Google Scholar 

  • Hu C, Wang M, Han X. Shotgun lipidomics in substantiating lipid peroxidation in redox biology: methods and applications. Redox Biol. 2017;12:946–55. https://doi.org/10.1016/j.redox.2017.04.030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ingelsson E, Schaefer E, Contois J, McNamara J, Sullivan L, Keyes M, Pencina M, Schoonmaker C, Wilson P, D’Agostino R, Vasan R. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. JAMA. 2007;298(7):776–85.

    Article  CAS  PubMed  Google Scholar 

  • Jacob SS, Hassan M, Yacoub MH. Utility of mass spectrometry for the diagnosis of the unstable coronary plaque. Glob Cardiol Sci Pract. 2015;2015(2). https://doi.org/10.5339/gcsp.2015.25.

  • Jeremy J, Gadsdon P, Shukla N, Vijayan V, Wyatt M, Newby A, Angelini G. On the biology of saphenous vein grafts fitted with external synthetic sheaths and stents. Biomaterials. 2007;28(6):895–908.

    Article  CAS  PubMed  Google Scholar 

  • Kastelein J, van Leuven S, Burgess L, Evans G, Kuivenhoven J, Barter P, Revkin J, Grobbee D, Riley W, Shear C, Duggan W, Bots M. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. 2007;356(16):1620–30.

    Article  CAS  PubMed  Google Scholar 

  • Kolovou G, Kolovou V, Mavrogeni S. Lipidomics in vascular health: current perspectives. Vasc Health Risk Manag. 2015;11:333–42. https://doi.org/10.2147/vhrm.s54874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuivenhoven J, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res. 1997;38(2):191–205.

    PubMed  CAS  Google Scholar 

  • Laaksonen R, Jänis M, Oresic M. Lipidomics-based safety biomarkers for lipid-lowering treatments. Angiology. 2008;59(2 Suppl):65S–8S.

    Article  PubMed  Google Scholar 

  • Langley SR, Willeit K, Didangelos A, Matic LP, Skroblin P, Barallobre-Barreiro J, Lengquist M, Rungger G, Kapustin A, Kedenko L, Molenaar C, Lu R, Barwari T, Suna G, Yin X, Iglseder B, Paulweber B, Willeit P, Shalhoub J, Pasterkamp G, Davies AH, Monaco C, Hedin U, Shanahan CM, Willeit J, Kiechl S, Mayr M. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127(4):1546–60. https://doi.org/10.1172/jci86924.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipids M. Apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000. https://doi.org/10.1001/jama.2009.1619.

    Article  Google Scholar 

  • Lund-Katz S, Phillips M. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem. 2010;51:183–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Barallobre-Barreiro J, Jahangiri M, Mayr M. Vascular proteomics in metabolic and cardiovascular diseases. J Intern Med. 2016;280(4):325–38. https://doi.org/10.1111/joim.12486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Donnell VB, Murphy RC, Watson SP. Platelet lipidomics: a modern day perspective on lipid discovery and characterization in platelets. Circ Res. 2014;114(7):1185–203. https://doi.org/10.1161/circresaha.114.301597.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagler T, Rhode S, Neuhofer A, Laggner H, Strobl W, Hinterndorfer C, Volf I, Pavelka M, Eckhardt E, van der Westhuyzen D, Schütz G, Stangl H. SR-BI-mediated high density lipoprotein (HDL) endocytosis leads to HDL resecretion facilitating cholesterol efflux. J Biol Chem. 2006;281(16):11193–204.

    Article  CAS  PubMed  Google Scholar 

  • Pfisterer L, König G, Hecker M, Korff T. Pathogenesis of varicose veins – lessons from biomechanics. Vasa. 2014;43(2):88–99.

    Article  PubMed  Google Scholar 

  • Rasmiena A, Barlow C, Stefanovic N, Huynh K, Tan R, Sharma A, Tull D, de Haan J, Meikle P. Plasmalogen modulation attenuates atherosclerosis in ApoE- and ApoE/GPx1-deficient mice. Atherosclerosis. 2015;243(2):598–608.

    Article  CAS  PubMed  Google Scholar 

  • Salazar J, Olivar LC, Ramos E, Chávez-Castillo M, Rojas J, Bermúdez V. Dysfunctional high-density lipoprotein: an innovative target for proteomics and lipidomics. Cholesterol. 2015;2015. https://doi.org/10.1155/2015/296417.

  • Santos A, Fonseca F, Fischer S, Monteiro C, Brandão S, Póvoa R, Bombig M, Carvalho A, Monteiro A, Ramos E, Gidlund M, Figueiredo Neto A, Izar M. High circulating autoantibodies against human oxidized low-density lipoprotein are related to stable and lower titers to unstable clinical situation. Clin Chim Acta. 2009;406(1–2):113–8.

    Article  CAS  PubMed  Google Scholar 

  • Sergent O, Ekroos K, Lefeuvre-Orfila L, Rissel M, Forsberg G, Oscarsson J, Andersson T, Lagadic-Gossmann D. Ximelagatran increases membrane fluidity and changes membrane lipid composition in primary human hepatocytes. Toxicol In Vitro. 2009;23(7):1305–10.

    Article  CAS  PubMed  Google Scholar 

  • Serhan C. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101–37.

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Eckhardt E, Shetty S, van der Westhuyzen D, Webb N. Quantitative analysis of SR-BI-dependent HDL retroendocytosis in hepatocytes and fibroblasts. J Lipid Res. 2006;47(8):1700–13.

    Article  CAS  PubMed  Google Scholar 

  • Surma MA, Herzog R, Vasilj A, Klose C, Christinat N, Morin-Rivron D, Simons K, Masoodi M, Sampaio JL. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur J Lipid Sci Technol. 2015;117(10):1540–9. https://doi.org/10.1002/ejlt.201500145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarasov K, Ekroos K, Suoniemi M, Kauhanen D, Sylvänne T, Hurme R, Gouni-Berthold I, Berthold HK, Kleber ME, Laaksonen R, März W. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J Clin Endocrinol Metab. 2014;99(1):E45–52. https://doi.org/10.1210/jc.2013-2559.

    Article  PubMed  Google Scholar 

  • Tonks K, Coster A, Christopher M, Chaudhuri R, Xu A, Gagnon-Bartsch J, Chisholm D, James D, Meikle P, Greenfield J, Samocha-Bonet D. Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity (Silver Spring). 2016;24(4):908–16.

    Article  CAS  Google Scholar 

  • Tumanov S, Kamphorst JJ. Recent advances in expanding the coverage of the lipidome. Curr Opin Biotechnol. 2017;43:127–33. https://doi.org/10.1016/j.copbio.2016.11.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Fang H, Han X. Shotgun lipidomics analysis of 4-hydroxyalkenal species directly from lipid extracts after one-step in situ derivatization. Anal Chem. 2012;84(10):4580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Han R, Han X. Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal Chem. 2013;85(19):9312–20.

    Article  CAS  PubMed  Google Scholar 

  • Zannis V, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med. 2006;84(4):276–94.

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood J, Liu Y, Peng Q, Ramaraju H, Sullards M, Cabot M, Merrill A. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta. 2006;1758(12):1864–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W., Zhou, X., Guo, D., Fu, W., Wang, L. (2018). Lipidomics in Carotid Artery Stenosis: Further Understanding of Pathology and Treatment. In: Wang, X., Wu, D., Shen, H. (eds) Lipidomics in Health & Disease. Translational Bioinformatics, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-0620-4_5

Download citation

Publish with us

Policies and ethics