Skip to main content

Phospholipid and Phospholipidomics in Health and Diseases

  • Chapter
  • First Online:
Lipidomics in Health & Disease

Part of the book series: Translational Bioinformatics ((TRBIO,volume 14))

Abstract

Phospholipids (PLs), which are of diverse chemical structures, are not only the major component of the plasma membranes, but also act as signaling mediators for various biological processes and play key roles in energy storage. Cumulative evidence indicates that alterations in composition, distribution, and metabolism of various PLs in cells, tissues, as well as body fluids, have been implicated in various human diseases such as cancer, diabetes, cardiovascular and infectious diseases. The techniques for comprehensive characterization and quantification of PLs (defined here as phospholipidomics) has made profound advances and been rapidly expanded, which not only allows for “visualizing” and understanding the changes of hundreds to thousands of individual PL species, but also facilitates to explore the underlying mechanisms of PLs metabolism and their (dys) regulation in health and disease. Here, we provide an overview of the current state of knowledge with respect to the structural diversity and cellular function of PLs, as well as their implication with various diseases, and the strategies for phospholipidomics analysis and some recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adibhatla RM, Hatcher JF. Role of lipids in brain injury and diseases. Futur Lipidol. 2007;2(4):403–22.

    Article  CAS  Google Scholar 

  • Allen D, Hasanally D, Ravandi A. Role of oxidized phospholipids in cardiovascular pathology. Clin Lipidol. 2013;8(2):205–15.

    Article  CAS  Google Scholar 

  • Arteaga CL. EGF receptor mutations in lung cancer: from humans to mice and maybe back to humans. Cancer Cell. 2006;9:421–3.

    Article  PubMed  CAS  Google Scholar 

  • Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 2004;3:772–5.

    Article  PubMed  CAS  Google Scholar 

  • Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93(3):1019–137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM, et al. Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer. 2008;122:2255–9.

    Article  PubMed  CAS  Google Scholar 

  • Beckonert O, Monnerjahn J, Bonk U, Leibfritz D. Visualizing metabolic changes in breast-cancer tissue using 1H NMR spectroscopy and self-organizing maps. NMR Biomed. 2003;16(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  • Berry KA, Murphy RC. Analysis of cell membrane aminophospholipids as isotope-tagged derivatives. J Lipid Res. 2005;46:1038–46.

    Article  PubMed  CAS  Google Scholar 

  • Birgbauer E, Chun J. New developments in the biological functions of lysophospholipids. Cell Mol Life Sci. 2006;63(23):2695–701.

    Article  PubMed  CAS  Google Scholar 

  • Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, Barcinski M, Brekken RA, Huang X, Hutchins JT, Freimark B, Empig C, Mercer J, Schroit AJ, Schett G, Herrmann M. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23(6):962–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959. 1959;37:911–7.

    Article  CAS  Google Scholar 

  • Bollinger JG, Thompson W, Lai Y, Oslund RC, Hallstrand TS, Sadilek M, Turecek F, Gelb MH. Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. Anal Chem. 2010;82:6790–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma fromfasting donors. Proc Natl Acad Sci U S A. 1992;89:10316–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caberoy NB, Zhou Y, Alvarado G, Fan X, Li W. Efficient identification of phosphatidylserine-binding proteins by ORF phage display. Biochem Biophys Res Commun. 2009;386(1):197–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai T, Shu Q, Hou J, Liu P, Niu L, Guo X, Liu CC, Yang F. Profiling and relative quantitation of phosphoinositides by multiple precursor ion scanning based on phosphate methylation and isotopic labeling. Anal Chem. 2015;87:513–21.

    Article  PubMed  CAS  Google Scholar 

  • Cai T, Shu Q, Liu P, Niu L, Guo X, Ding X, Xue P, Xie Z, Wang J, Zhu N, Wu P, Niu L, Yang F. Characterization and relative quantification of phospholipids based on methylation and stable isotopic labeling. J Lipid Res. 2016;57(3):388–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng M, Bhujwalla ZM, Glunde K. Targeting phospholipid metabolism in cancer. Front Oncol. 2016;6:266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi S, Thapa N, Tan X, Hedman AC, Anderson RA. PIP kinases define PI4,5P2 signaling specificity by association with effectors. Biochim Biophys Acta. 2015;1851(6):711–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crabbe T, Welham MJ, Ward SG. The PI3K inhibitor arsenal: choose your weapon! Trends Biochem Sci. 2007;32:450–6.

    Article  PubMed  CAS  Google Scholar 

  • Cruz M, Wang M, Frisch-Daiello J, Han X. Improved Butanol-Methanol (BUME) method by replacing acetic acid for lipid extraction of biological samples. Lipids. 2016;51(7):887–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Z, Thomas MJ. Phospholipid profiling by tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:2709–15.

    Article  CAS  Google Scholar 

  • Cyrus T, Pratico D, Zhao L, Witztum JL, Rader DJ, Rokach J, FitzGerald GA, Funk CD. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice. Circulation. 2001;103:2277–82.

    Article  PubMed  CAS  Google Scholar 

  • De Craene JO, Bertazzi DL, Bär S, Friant S. Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int J Mol Sci. 2017; 18(3). pii: E634.

    Google Scholar 

  • de Hoffmann E. Tandem mass spectrometry: a primer. J Mass Spectrom. 1996;31:129–37.

    Article  Google Scholar 

  • DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol. 2010;184:1918–30.

    Article  PubMed  CAS  Google Scholar 

  • Dobrzyńska I, Szachowicz-Petelska B, Darewicz B, Figaszewski ZA. Characterization of human bladder cell membrane during cancer transformation. J Membr Biol. 2015;248(2):301–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC. RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science. 1998;280(5366):1082–6.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein CL, Ling H, Schrier RW. The nature of renal cell injury. Kidney Int. 1997;51(5):1341–51.

    Article  PubMed  CAS  Google Scholar 

  • Ejsing CS, Ekroos K, Jackson S, Duchoslav E, Hao Z, Pelt CKv, Simons K, Shevchenko A. Shotgun lipidomics: high throughput profiling of the molecular composition of phospholipids ASMS abstract achieves. 2004.

    Google Scholar 

  • Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R, Thiele C, Ekroos K, Shevchenko A. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem. 2006;78:6202–14.

    Article  PubMed  CAS  Google Scholar 

  • Ekroos K, Chernushevich IV, Simons K, Shevchenko A. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal Chem. 2002;74:941–9.

    Article  PubMed  CAS  Google Scholar 

  • Engelman JA. The role of phosphoinositide 3-kinase pathway inhibitors in the treatment of lung cancer. Clin Cancer Res. 2007;13:s4637–40.

    Article  PubMed  CAS  Google Scholar 

  • Escribá PV, González-Ros JM, Goñi FM, Kinnunen PK, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med. 2008;12(3):829–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Escribá PV, Busquets X, Inokuchi J, Balogh G, Török Z, Horváth I, Harwood JL, Vígh L. Membrane lipid therapy: modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res. 2015;59:38–53.

    Article  PubMed  CAS  Google Scholar 

  • Fernandis AZ, Wenk MR. Lipid-based biomarkers for cancer. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(26):2830–5.

    Article  CAS  Google Scholar 

  • Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012;32(12):2813–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH. Asimple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    PubMed  CAS  Google Scholar 

  • Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev. 2010;235:172–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Getz GS, Wool GD, Reardon CA. HDL apolipoprotein-related peptides in the treatment of atherosclerosis and other inflammatory disorders. Curr Pharm Des. 2010;16(28):3173–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gohil VM, Miriam L. GreenbergMitochondrial membrane biogenesis: phospholipids and proteins go hand in hand. J Cell Biol. 2009;184(4):469–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guasch-Ferré M, Hruby A, Toledo E, Clish CB, Martínez-González MA, Salas-Salvadó J, Hu FB. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39(5):833–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haimi P, Uphoff A, Hermansson M, Somerharju P. Software tools for analysis of mass spectrometric lipidome data. Anal Chem. 2006;78:8324–31.

    Article  PubMed  CAS  Google Scholar 

  • Han X. Neurolipidomics: challenges and developments. Front Biosci. 2007;12:2601–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han X, Gross RW. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem. 2001;295:88–100.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005a;24(3):367–412.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Gross RW. Shotgun lipidomics: multi-dimensional mass spectrometric analysis of cellular lipidomes. Expert Rev Proteomics. 2005b;2:253–64.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Jiang X. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications. Eur J Lipid Sci Technol. 2009;111(1):39–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han X, Yang J, Cheng H, Ye H, Gross RW. Towards fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal Biochem. 2004;330:317–31.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev. 2012a;31:134–78.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev. 2012b;31(1):134–78.

    Article  PubMed  CAS  Google Scholar 

  • Han RH, et al. Simulation of triacylglycerol ion profiles: bioinformatics for interpretation of triacylglycerol biosynthesis. J Lipid Res. 2013;54:1023–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 2011;12:R8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodge AM, English DR, O’Dea K, Sinclair AJ, Makrides M, Gibson RA, Giles GG. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr. 2007;86(1):189–97.

    Article  PubMed  CAS  Google Scholar 

  • Husen P, Tarasov K, Katafiasz M, Sokol E, Vogt J, Baumgart J, Nitsch R, Ekroos K, Ejsing CS. Analysis of Lipid Experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS One. 2013;8:e79736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. J Gen Physiol. 2014;143(2):183–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang X, Cheng H, Yang K, Gross RW, Han X. Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low abundance regime of cellular sphingolipids. Anal Biochem. 2007;371:135–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi AS, Zhou J, Gohil VM, Chen S, Greenberg ML. Cellular functions of cardiolipin in yeast. Biochim Biophys Acta. 2009;1793:212–21.

    Article  PubMed  CAS  Google Scholar 

  • Kabachinski G, Yamaga M, Michelle Kielar-Grevstad D, Bruinsma S, Martin TFJ. CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Mol Biol Cell. 2014;25(4):508–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kagan VE, Quinn PJ. Toward oxidative lipidomics of cell signaling. Antioxid Redox Signal. 2004;6:199–202.

    Article  PubMed  CAS  Google Scholar 

  • Ketel K, Krauss M, Nicot AS, Puchkov D, Wieffer M, Müller R, Subramanian D, Schultz C, Laporte J, Haucke V. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529(7586):408–12.

    Article  PubMed  CAS  Google Scholar 

  • Kiebish MA, et al. Dynamic simulation of cardiolipin remodeling: greasing the wheels for an interpretative approach to lipidomics. J Lipid Res. 2010;51:2153–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kind T, Liu KH, Lee do Y, Defelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10(8):755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA. The role of phospholipid oxidation products in atherosclerosis. Circ Res. 2012;111(6):778–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lofgren L, Stahlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53:1690–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin GS. Cell signaling and cancer. Cancer Cell. 2003;4(3):167–74.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura E, Hughes GR, Khamashta MA. Oxidation of LDL and its clinical implication. Autoimmun Rev. 2008;7(7):558–66.

    Article  PubMed  CAS  Google Scholar 

  • Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods. 2005;36:207–24.

    Article  PubMed  CAS  Google Scholar 

  • Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature. 2007;450:435–9.

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar WH, Hla T. Snapshot: bioactive lysophospholipids. Cell. 2012;148(1–2):378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moolenaar WH, Kranenburg O, Postma FR, Zondag GC. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol. 1997;9(2):168–73.

    Article  PubMed  CAS  Google Scholar 

  • Morrison WR, Tan SL, Hargin KD. Methods for the quantitative analysis of lipids in cereal grains and similar tissues. J Sci Food Agric. 1980;31:329–40.

    Article  PubMed  CAS  Google Scholar 

  • MP W, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9(2):162–76.

    Article  CAS  Google Scholar 

  • Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. Hdl and cardiovascular disease: Atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8:222–32.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls SJ, Hazen SL. Myeloperoxidase, modified lipoproteins, and atherogenesis. J Lipid Res. 2009;50(Suppl):S346–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicolson GL, Ash ME. Membrane lipid replacement for chronic illnesses, aging and cancerusing oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellularmembranes, organelles, cells and tissues. Biochim Biophys Acta. 2017;1859(9 Pt B):1704–24.

    Article  CAS  Google Scholar 

  • Nie S, Pham HT, Blanksby SJ, Reid GE. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions. Eur J Mass Spectrom (Chichester Eng). 2015;21:287–96.

    Article  CAS  Google Scholar 

  • Penno A, Hackenbroich G, Thiele C. Phospholipids and lipid droplets. Biochim Biophys Acta. 2013;1831(3):589–94.

    Article  PubMed  CAS  Google Scholar 

  • Postle AD. Phospholipid lipidomics in health and disease. Eur J Lipid Sci Technol. 2009;111:2–13.

    Article  CAS  Google Scholar 

  • Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 2013;12(1):105–18.

    Article  PubMed  CAS  Google Scholar 

  • Rozengurt E, Rey O, Waldron RT. Protein kinase D signaling. J Biol Chem. 2005;280:13205–8.

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Okuyama H, Yura J, Takeyama H, Shinagawa N, Tsuruga N, et al. Composition and turnover of phospholipids and neutral lipids in human breast cancer and reference tissues. Carcinogenesis. 1992;13(4):579–84.

    Article  PubMed  CAS  Google Scholar 

  • Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT, Ejsing CS, Kurzchalia T, Shevchenko A. Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal Chem. 2006;78:585–95.

    Article  PubMed  CAS  Google Scholar 

  • Schwudke D, Hannich JT, Surendranath V, Grimard V, Moehring T, Burton L, Kurzchalia T, Shevchenko A. Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. Anal Chem. 2007;79:4083–93.

    Article  PubMed  CAS  Google Scholar 

  • Schwudke D, Schuhmann K, Herzog R, Bornstein SR, Shevchenko A. Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb Perspect Biol. 2011;3:a004614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol. 2010;11(8):593.

    Article  PubMed  CAS  Google Scholar 

  • Steffen BT, Steffen LM, Tracy R, Siscovick D, Hanson NQ, Nettleton J, Tsai MY. Obesity modifies the association between plasma phospholipid polyunsaturated fatty acids and markers of inflammation: the multi-ethnic study of atherosclerosis. Int J Obes. 2012;36(6):797–804.

    Article  CAS  Google Scholar 

  • Storey SM, McIntosh AL, Senthivinayagam S, Moon KC, Atshaves BP. The phospholipid monolayer associated with perilipin-enriched lipid droplets is a highly organized rigid membrane structure. Am J Physiol Endocrinol Metab. 2011;301(5):E991–E1003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sullards MC, Wang E, Peng Q, Merrill AH Jr. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatographytandem mass spectrometry. Cell Mol Biol. 2003;49:789–97.

    PubMed  CAS  Google Scholar 

  • Taguchi R, Hayakawa J, Takeuchi Y, Ishida M. Two-dimensional analysis of phospholipids by capillary liquid chromatography/electrospray ionization mass spectrometry. J Mass Spectrom. 2000;35:953–66.

    Article  PubMed  CAS  Google Scholar 

  • Tsimikas S, Willeit P, Willeit J, et al. Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascularevents. J Am Coll Cardiol. 2012;60(21):2218–29.

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Kim GH, Wei F, Chen H, Altarejos J, Han X. Improved method for quantitative analysis of methylated phosphatidylethanolamine species and its application for analysis of diabetic-mouse liver samples. Anal Bioanal Chem. 2015;407:5021–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Wang C, Han RH, Han X. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res. 2016;61:83–108.

    Article  PubMed  CAS  Google Scholar 

  • Wasslen KV, Canez CR, Lee H, Manthorpe JM, Smith JC. Trimethylation enhancement using diazomethane (TrEnDi) II: rapid in-solution concomitant quaternization of glycerophospholipid amino groups and methylation of phosphate groups via reaction with diazomethane significantly enhances sensitivity in mass spectrometry analyses via a fixed, permanent positive charge. Anal Chem. 2014;86:9523–32.

    Article  PubMed  CAS  Google Scholar 

  • WC H, Weinberg RA. Rules for making human tumorcells. N Engl J Med. 2002;347:1593–603.

    Article  Google Scholar 

  • Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4(7):594–610.

    Article  PubMed  CAS  Google Scholar 

  • Wolf C, Quinn PJ. Lipidomics: practical aspects and applications. Prog Lipid Res. 2008;47:15–36.

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41(11):954–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C, Kazanietz MG. Chimaerins: GAPs that bridge diacylglycerol signalling and the small G-protein Rac. Biochem J. 2007;403(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Cheng H, Gross RW, Han X. Automated lipid identification and quantification by multi-dimensional mass spectrometry-based shotgun lipidomics. Anal Chem. 2009;81:4356–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update. 2008;14(5):519–36.

    Article  PubMed  CAS  Google Scholar 

  • Zager RA, Sacks BM, Burkhart KM, Williams AC. Plasma membrane phospholipid integrity and orientation during hypoxic and toxic proximal tubular attack. Kidney Int. 1999;56(1):104–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2018YFA0507801), the National Natural Science Foundation of China (Grants 31670185 and 91640112) and the Stragetic Priority Research Programs of the Chinese Academy of Sciences (XDA12030202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuquan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, T., Yang, F. (2018). Phospholipid and Phospholipidomics in Health and Diseases. In: Wang, X., Wu, D., Shen, H. (eds) Lipidomics in Health & Disease. Translational Bioinformatics, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-0620-4_11

Download citation

Publish with us

Policies and ethics