Skip to main content

Protecting SSD Data Against Attacks

  • Chapter
  • First Online:
Inside Solid State Drives (SSDs)

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 37))

  • 2128 Accesses

Abstract

When a drive is broken and we have to throw it away, we want to be sure that no hackers can recover the data stored in that disk, especially in the enterprise environment where sensitive date are stored on the drive, such as financial transactions or military applications. As the SSD market is growing, the security issue must be carefully considered. Some methods used with HDDs, such as degaussian , are not applicable to SSDs, due to the different storage technique. Recent studies indicate that encryption is the necessary step to protect data stored in SSD against hackers attacks. This chapter describes the SSD security approach in comparison to HDD , then it walks the reader through the encryption world: how a cryptosystem is built, how a cryptosystem is broken, different encryption applications, and then the AES cryptosystem as it is the most used in SSDs; finally, it addresses the security applications in SSDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. www.runcore.com

  2. M. Wei, L.M. Grupp, F.E. Spada, S. Swanson, Reliably erasing data from flash-based solid state drives, in Usenix FAST 11 Conference (San Jose, 2011)

    Google Scholar 

  3. C. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J. 27, 379–423 (1949)

    Article  MathSciNet  Google Scholar 

  4. O. Goldreich, Foundations of Criptography: Basic Tools (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  5. D.R. Stinson, Cryptography: Theory and Practice (Chapman & Hall/CRC, London, 2006)

    MATH  Google Scholar 

  6. W. Diffie, M.E. Hellman, Multiuser cryptographic techniques. Fed. Inf. Process. Stand. Conf. Proc. 45, 109–112 (1979)

    Google Scholar 

  7. U. Maurer, S. Wolf, The Diffie-Hellman protocol. Des. Codes Cryptogr. 19, 147–171 (2000)

    Article  MathSciNet  Google Scholar 

  8. B. Schneier, Secrets and Lies: Digital Security in a Networked World (Wiley, New York, 2000)

    Google Scholar 

  9. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  10. A.K. Lenstra, E.R. Verheaul, Selecting cryptographic key sizes. J. Cryptolo. 14, 255–293 (2001)

    Article  MathSciNet  Google Scholar 

  11. M.O. Rabin, Probabilistic algorithms for testing primality. J. Number Theory 12, 128–138 (1980)

    Article  MathSciNet  Google Scholar 

  12. M.J. Wiener, Cryptoanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36, 553–558 (1990)

    Article  Google Scholar 

  13. A.K. Lenstra, Integer factoring. Des. Codes Cryptogr. 19, 101–128 (2000)

    Article  MathSciNet  Google Scholar 

  14. D. Boneh, G. Durfee, Cryptoanalysis of RSA with private key d less than N0.292. IEEE Trans. Inf. Theory 46, 1339–1349 (2000)

    Article  Google Scholar 

  15. D. Boneh, Twenty years of attacks on the RSA cryptosystem. Not. Am. Math. Soc. 46, 203–213 (1999)

    MathSciNet  MATH  Google Scholar 

  16. N. Ferguson, B. Schneier, Practical Cryptography (Wiley, New York, 2003)

    MATH  Google Scholar 

  17. H. Delfs, H. Knebl, Introduction to Cryptography: Principles and Applications (Springer, New York, Berlin, 2002)

    Book  Google Scholar 

  18. R. Churchhouse, Codes and Ciphers: Julius Caesar, the Enigma and the Internet (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  19. M. Bellare, R. Canetti, H. Krawczyk, Keying hash function for message authentication. Lect. Notes Comput. Sci. 1109, 1–15 (1996)

    Article  Google Scholar 

  20. P. Preneel, P.C. Van Oorschot, On the security of iterated message authentication codes. IEEE Trans. Inf. Theory 45, 188–199 (1999)

    Article  MathSciNet  Google Scholar 

  21. D. Pointcheval, J. Stern, Security arguments for signature schemes and blind signatures. J. Cryptol. 13, 361–396 (2000)

    Article  Google Scholar 

  22. T.P. Pedersen, Signing contracts and paying electronically. Lect. Notes Comput. Sci. 1561, 134–157 (1999)

    Article  Google Scholar 

  23. Advanced Encryption Standard in Federal Information Processing Standard (FIPS) Publication 197 (2001)

    Google Scholar 

  24. J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, E. Roback, Report on the development of the advanced encryption standard (AES), 2 Oct 2000

    Google Scholar 

  25. S. Murphy, M.J.B. Robshaw, Essential algebraic structure within AES. Lect. Notes Comput. Sci. 2442, 1–16 (2002)

    Article  MathSciNet  Google Scholar 

  26. S. Landau, Polynomials in the nation’s service: using algebra to design the advanced encryption standard. Am. Math. Mon. 111, 89–117 (2004)

    Article  MathSciNet  Google Scholar 

  27. S. Landau, Standing the test of time: the data encryption standard. Not. Am. Math. Soc. 47, 341–349 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Marelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marelli, A., Micheloni, R. (2018). Protecting SSD Data Against Attacks. In: Micheloni, R., Marelli, A., Eshghi, K. (eds) Inside Solid State Drives (SSDs). Springer Series in Advanced Microelectronics, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-13-0599-3_13

Download citation

Publish with us

Policies and ethics