Skip to main content

Induction of Chromosomal Translocations with CRISPR-Cas9 and Other Nucleases: Understanding the Repair Mechanisms That Give Rise to Translocations

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1044))

Abstract

Chromosomal translocations are associated with several tumor types, including hematopoietic malignancies, sarcomas, and solid tumors of epithelial origin, due to their activation of a proto-oncogene or generation of a novel fusion protein with oncogenic potential. In many cases, the availability of suitable human models has been lacking because of the difficulty in recapitulating precise expression of the fusion protein or other reasons. Further, understanding how translocations form mechanistically has been a goal, as it may suggest ways to prevent their occurrence. Chromosomal translocations arise when DNA ends from double-strand breaks (DSBs) on two heterologous chromosomes are improperly joined. This review provides a summary of DSB repair mechanisms and their contribution to translocation formation, the various programmable nuclease platforms that have been used to generate translocations, and the successes that have been achieved in this area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279:55117–55126

    Article  CAS  PubMed  Google Scholar 

  2. Barton O, Naumann SC, Diemer-Biehs R, Kunzel J, Steinlage M, Conrad S, Makharashvili N, Wang J, Feng L, Lopez BS et al (2014) Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. J Cell Biol 206:877–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Biehs R, Steinlage M, Barton O, Juhasz S, Kunzel J, Spies J, Shibata A, Jeggo PA, Lobrich M (2017) DNA double-strand break resection occurs during non-homologous end joining in G1 but is distinct from resection during homologous recombination. Mol Cell 65(671–684):e675

    Google Scholar 

  4. Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, Minero VG, Voena C, Chiarle R (2014) Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 9:1219–1227

    Article  CAS  PubMed  Google Scholar 

  5. Breese EH, Buechele C, Dawson C, Cleary ML, Porteus MH (2015) Use of genome engineering to create patient specific MLL translocations in primary human hematopoietic stem and progenitor cells. PLoS One 10:e0136644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brunet E, Simsek D, Tomishima M, DeKelver R, Choi VM, Gregory P, Urnov F, Weinstock DM, Jasin M (2009) Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci U S A 106:10620–10625

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buechele C, Breese EH, Schneidawind D, Lin CH, Jeong J, Duque-Afonso J, Wong SH, Smith KS, Negrin RS, Porteus M et al (2015) MLL leukemia induction by genome editing of human CD34+ hematopoietic cells. Blood 126:1683–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD, Boulton SJ (2013) RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell 49:858–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen X, Li M, Feng X, Guang S (2015) Targeted chromosomal translocations and essential gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Genetics 201:1295–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi PS, Meyerson M (2014) Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 5:3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colleaux L, d'Auriol L, Gailbert F, Dujon B (1988) Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci U S A 85:6022–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, Haber JE, Iliakis G, Kallioniemi OP, Halazonetis TD (2014) Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91

    Article  CAS  PubMed  Google Scholar 

  13. Day TA, Layer JV, Cleary JP, Guha S, Stevenson KE, Tivey T, Kim S, Schinzel AC, Izzo F, Doench J et al (2017) PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA. Nat Commun 8:15110

    Article  PubMed  PubMed Central  Google Scholar 

  14. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  PubMed  Google Scholar 

  15. Elliott B, Richardson C, Jasin M (2005) Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17:885–894

    Article  CAS  PubMed  Google Scholar 

  16. Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18:93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferguson DO, Alt FW (2001) DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20:5572–5579

    Article  CAS  PubMed  Google Scholar 

  18. Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, Oh S, Tomkinson AE, Hendrickson EA, Giovannangeli C et al (2014) Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 55:829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gillert E, Leis T, Repp R, Reichel M, Hosch A, Breitenlohner I, Angermuller S, Borkhardt A, Harbott J, Lampert F et al (1999) A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells. Oncogene 18:4663–4671

    Article  CAS  PubMed  Google Scholar 

  20. Harris S, Rudnicki KS, Haber JE (1993) Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae. Genetics 135:5–16

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Jasin M, Haber JE (2016) The democratization of gene editing: insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 44:6–16

    Article  CAS  Google Scholar 

  22. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang J, Zhang L, Zhou X, Chen X, Huang G, Li F, Wang R, Wu N, Yan Y, Tong C et al (2016) Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep 6:21918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  25. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kass EM, Jasin M (2010) Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett 584:3703–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim S, Peterson SE, Jasin M, Keeney S (2016) Mechanisms of germ line genome instability. Semin Cell Dev Biol 54:177–187

    Article  CAS  PubMed  Google Scholar 

  28. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lagutina IV, Valentine V, Picchione F, Harwood F, Valentine MB, Villarejo-Balcells B, Carvajal JJ, Grosveld GC (2015) Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS Genet 11:e1004951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. LaRocque JR, Stark JM, Oh J, Bojilova E, Yusa K, Horie K, Takeda J, Jasin M (2011) Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells. Proc Natl Acad Sci U S A 108:11971–11976

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E et al (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mani RS, Chinnaiyan AM (2010) Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nat Rev Genet 11:819–829

    Article  CAS  PubMed  Google Scholar 

  33. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A (2015) Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature 518:254–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mattarucchi E, Guerini V, Rambaldi A, Campiotti L, Venco A, Pasquali F, Lo Curto F, Porta G (2008) Microhomologies and interspersed repeat elements at genomic breakpoints in chronic myeloid leukemia. Genes Chromosomes Cancer 47:625–632

    Article  CAS  PubMed  Google Scholar 

  35. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  36. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nilsson D, Pettersson M, Gustavsson P, Forster A, Hofmeister W, Wincent J, Zachariadis V, Anderlid BM, Nordgren A, Makitie O et al (2017) Whole-genome sequencing of cytogenetically balanced chromosome translocations identifies potentially pathological gene disruptions and highlights the importance of microhomology in the mechanism of formation. Hum Mutat 38:180–192

    Article  CAS  PubMed  Google Scholar 

  38. Piganeau M, Ghezraoui H, De Cian A, Guittat L, Tomishima M, Perrouault L, Rene O, Katibah GE, Zhang L, Holmes MC et al (2013) Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 23:1182–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reimer J, Knoess S, Labuhn M, Charpentier EM, Gohring G, Schlegelberger B, Klusmann JH, Heckl D (2017) CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo. Haematologica 102:1558

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reiter A, Saussele S, Grimwade D, Wiemels JL, Segal MR, Lafage-Pochitaloff M, Walz C, Weisser A, Hochhaus A, Willer A et al (2003) Genomic anatomy of the specific reciprocal translocation t(15;17) in acute promyelocytic leukemia. Genes Chromosomes Cancer 36:175–188

    Article  CAS  PubMed  Google Scholar 

  41. Renouf B, Piganeau M, Ghezraoui H, Jasin M, Brunet E (2014) Creating cancer translocations in human cells using Cas9 DSBs and nCas9 paired nicks. Methods Enzymol 546:251–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Richardson C, Jasin M (2000a) Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol 20:9068–9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Richardson C, Jasin M (2000b) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700

    Article  CAS  PubMed  Google Scholar 

  44. Richardson C, Moynahan ME, Jasin M (1998) Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12:3831–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scott KP, Mercer DK, Richardson AJ, Melville CM, Glover LA, Flint HJ (2000) Chromosomal integration of the green fluorescent protein gene in lactic acid bacteria and the survival of marked strains in human gut simulations. FEMS Microbiol Lett 182:23–27

    Article  CAS  PubMed  Google Scholar 

  46. Sfeir A, Symington LS (2015) Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40:701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, Lou J, Zhang L, Li J, Rebar EJ et al (2011) DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet 7:e1002080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simsek D, Jasin M (2010) Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17:410–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soni A, Siemann M, Grabos M, Murmann T, Pantelias GE, Iliakis G (2014) Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res 42:6380–6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spraggon L, Martelotto LG, Hmeljak J, Hitchman TD, Wang J, Wang L, Slotkin EK, Fan PD, Reis-Filho JS, Ladanyi M (2017) Generation of conditional oncogenic chromosomal translocations using CRISPR-Cas9 genomic editing and homology-directed repair. J Pathol 242:102–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stark JM, Jasin M (2003) Extensive loss of heterozygosity is suppressed during homologous repair of chromosomal breaks. Mol Cell Biol 23:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M (2004) Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24:9305–9316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  54. Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5:3964

    Article  CAS  PubMed  Google Scholar 

  55. Torres-Ruiz R, Martinez-Lage M, Martin MC, Garcia A, Bueno C, Castano J, Ramirez JC, Menendez P, Cigudosa JC, Rodriguez-Perales S (2017) Efficient recreation of t(11;22) EWSR1-FLI1+ in human stem cells using CRISPR/Cas9. Stem Cell Reports 8:1408–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Turner SD, Alexander DR (2005) What have we learnt from mouse models of NPM-ALK-induced lymphomagenesis? Leukemia 19:1128–1134

    Article  CAS  PubMed  Google Scholar 

  57. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  58. Vanoli F, Tomishima M, Feng W, Lamribet K, Babin L, Brunet E, Jasin M (2017) CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc Natl Acad Sci U S A 114:3696–3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weckselblatt B, Hermetz KE, Rudd MK (2015) Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 25:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weinstock DM, Brunet E, Jasin M (2007) Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat Cell Biol 9:978–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weinstock DM, Brunet E, Jasin M (2008) Induction of chromosomal translocations in mouse and human cells using site-specific endonucleases. J Natl Cancer Inst Monogr 2008:20–24

    Article  CAS  Google Scholar 

  62. Weinstock DM, Richardson CA, Elliott B, Jasin M (2006) Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst) 5:1065–1074

    Article  CAS  Google Scholar 

  63. Wray J, Williamson EA, Singh SB, Wu Y, Cogle CR, Weinstock DM, Zhang Y, Lee SH, Zhou D, Shao L et al (2013) PARP1 is required for chromosomal translocations. Blood 121:4359–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang WW, Lypaczewski P, Matlashewski G (2017) Optimized CRISPR-Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms. mSphere 2:e00340

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhang Y, Jasin M (2011) An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol 18:80–84

    Article  CAS  PubMed  Google Scholar 

  66. Zucman-Rossi J, Legoix P, Victor JM, Lopez B, Thomas G (1998) Chromosome translocation based on illegitimate recombination in human tumors. Proc Natl Acad Sci U S A 95:11786–11791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

MSK research is supported by NIH/NCI Cancer Center support grant P30 CA008748. This work was supported in part by an Alex’s Lemonade Stand Innovation Award and NIH R01CA185660 and R35GM118175 (M.J.). E.B. research is supported by ANR-12-JSV6-0005, the Canceropole IdF, the Institut National du Cancer and la Ligue Contre le Cancer (Equipe de Villartay, Labelisée La Ligue Contre Le Cancer).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erika Brunet or Maria Jasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brunet, E., Jasin, M. (2018). Induction of Chromosomal Translocations with CRISPR-Cas9 and Other Nucleases: Understanding the Repair Mechanisms That Give Rise to Translocations. In: Zhang, Y. (eds) Chromosome Translocation. Advances in Experimental Medicine and Biology, vol 1044. Springer, Singapore. https://doi.org/10.1007/978-981-13-0593-1_2

Download citation

Publish with us

Policies and ethics