Skip to main content

Part of the book series: Springer Water ((SPWA))

Abstract

Droughts produce a complex set of negative economic, environmental, and social impacts from regional to national scales. Drought impacts can be quantified by using drought index time series, such as the monthly Standardized Precipitation Index (SPI) time series. Drought characteristics, namely drought duration, severity, time interval and the minimum SPI values, are determined in this chapter. Five hundred years of daily rainfall data are simulated for evaluating drought characteristics. Appropriate distributions are selected for modeling drought durations, time intervals, drought severity and the minimum SPI values in different drought states. The drought episodes are quantified using multivariate copula methods. Several copulas selected from the Archimedean and meta-elliptical families are applied to constructing four-dimensional joint distributions. The dependence structure in each drought state is investigated, and drought probabilities and return periods are calculated and analyzed based on a four-dimensional copula, where the upper Han River Basin, China is used as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alley WM (1984) The palmer drought severity index: limitations and assumptions. J Clim Appl Meteor 23:1100–1109

    Article  Google Scholar 

  • Below R, Grover-Kopec E, Dilley M (2007) Documenting drought-related disasters: a global reassessment. J Environ Develop 16(3):328–344

    Article  Google Scholar 

  • Bonaccorso B, Cancelliere A, Rossi G (2003) An analytical formulation of return period of drought severity. Stoch Env Res Risk A 17(3):157–174

    Article  Google Scholar 

  • Cancelliere A, Salas JD (2004) Drought length properties for periodic-stochastic hydrological data. Water Resour Res 40:W02503. https://doi.org/10.1029/2002WR001750

    Article  Google Scholar 

  • Cancelliere A, Salas JD (2010) Drought probabilities and return period for annual streamflows series. J Hydrol 391(1–2):77–89

    Article  Google Scholar 

  • Chen J, Brissette PF, Leconte R (2010) A daily stochastic weather generator for preserving low-frequency of climate variability. J Hydrol 388:480–490

    Article  Google Scholar 

  • Chen L, Singh VP, Guo S, Mishra AK, Guo J (2013) Drought analysis based on copulas. J Hydrol Eng 18(7):797–808

    Article  Google Scholar 

  • Estrela T, Vargas E (2012) Drought management plans in the European Union. The case of Spain. Water Resour Manag 26(6):1537–1553

    Article  Google Scholar 

  • Fernández B, Salas JD (1999) Return period and risk of hydrologic events I: mathematical formulation. J Hydrol Eng 4(4):297–307

    Article  Google Scholar 

  • Genest C, Favre AC, Béliveau J, Jacques C (2007) Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour Res 43(9):W09401

    Article  Google Scholar 

  • González J, Valdés JB (2003) Bivariate drought recurrence analysis using tree ring reconstructions. J Hydrol Eng 8(5):247–258

    Article  Google Scholar 

  • Guttman NB (1991) A sensitivity analysis of the Palmer hydrologic drought index. J Am Water Resour Assoc 27(5):797–807

    Article  Google Scholar 

  • Guttman NB (1998) Comparing the Palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34:113–121

    Article  Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc B 52:105–124

    MathSciNet  MATH  Google Scholar 

  • Kao SC, Govindaraju RS (2007) A bivariate frequency analysis of extreme rainfall with implications for design. J Geophys Res 112:D13119. https://doi.org/10.1029/2007JD008522

    Article  Google Scholar 

  • Kendall DR, Dracup JA (1992) On the generation of drought events using an alternating renewal-reward model. Stoch Hydrol Hydraul 6(1):55–68

    Article  Google Scholar 

  • Kim TW, Valdés JB, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. J Hydrol Eng 8(5):237–246

    Article  Google Scholar 

  • Mathier L, Perreault L, Bobe B, Ashkar F (1992) The use of geometric and gamma-related distributions for frequency analysis of water deficit. Stoch Hydrol Hydraul 6(4):239–254

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kliest J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference of applied climatology, 17–22 Jan, Anaheim, CA. American Meteorological Society, Boston, MA. pp 179–184

    Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216

    Article  Google Scholar 

  • Mishra A, Singh VP, Desai V (2009) Drought characterization: a probabilistic approach. Stoch Env Res Risk A 23(1):41–55

    Article  MathSciNet  Google Scholar 

  • Núñez JH, Verbist K, Wallis JR, Schaefer MG, Morales L, Cornelis WM (2011) Regional frequency analysis for mapping drought events in north-central Chile. J Hydrol 405(3–4):352–366

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research paper no. 45, US Department of Commerce, Weather Bureau, Washington, DC

    Google Scholar 

  • Salas JD, Fu C, Cancelliere A, Dustin D, Bode D, Pineda A, Vincent E (2005) Characterizing the severity and risk of drought in the Poudre River, Colorado. J Water Res Plan Man 131(5):383–393

    Article  Google Scholar 

  • Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S (2009) Probabilistic characterization of drought properties through copulas. Phys Chem Earth, Parts A/B/C 34(10–12):596–605

    Article  Google Scholar 

  • Shiau J (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  • Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Man 127(1):30–40

    Article  Google Scholar 

  • Shiau JT, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21(16):2157–2163

    Article  Google Scholar 

  • Song S, Singh VP (2010) Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch Env Res Risk A 24(5):783–805

    Article  Google Scholar 

  • Tallaksen LM, Madsen H, Clausen B (1997) On the definition and modeling of stream drought duration and deficit volume. Hydrol Sci J 42(1):15–33

    Article  Google Scholar 

  • Zelenhastic E, Salvai A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168

    Article  Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, L., Guo, S. (2019). Drought Analysis Using Copulas. In: Copulas and Its Application in Hydrology and Water Resources. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-13-0574-0_5

Download citation

Publish with us

Policies and ethics