Skip to main content

Biological Databases for Medicinal Plant Research

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Bioinformatics resources serve as an important source of data, knowledge, and information in biological studies, including plants having medicinal properties. Most of the plants found in nature have different medicinal properties; therefore, these are used to cure many human diseases from ancient times all over the world. Plant-derived medicines are an important source of lifesaving drugs. The availability of bioinformatics resources brought a major change in medicinal plant research, in terms of time, money, and labor. In this chapter, we have focused on various biological databases which are helpful in medicinal plant research and may result in a rapid and cost-effective lead generation toward finding remedies from plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Amid, C., Birney, E., Bower, L., Cerdeño-Tárraga, A., Cheng, Y., Cleland, I., Faruque, N., Gibson, R., Goodgame, N., Hunter, C., & Jang, M. (2011). Major submissions tool developments at the European nucleotide archive. Nucleic Acids Research, 40, D43–D47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babu, P. A., Suneetha, G., Boddepalli, R., Lakshmi, V. V., Rani, T. S., Babu, Y. R., & Srinivas, K. (2006). A database of 389 medicinal plants for diabetes. Bioinformation, 1, 130–131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee, P., Erehman, J., Gohlke, B. O., Wilhelm, T., Preissner, R., & Dunkel, M. (2014). Super natural II-a database of natural products. Nucleic Acids Research, 43, D935–D939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barker, W. C., Garavelli, J. S., Haft, D. H., Hunt, L. T., Marzec, C. R., Orcutt, B. C., Srinivasarao, G. Y., Yeh, L. S., Ledley, R. S., Mewes, H. W., & Pfeiffer, F. (1998). The PIR-international protein sequence database. Nucleic Acids Research, 26, 27–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., & Wheeler, D. L. (2000). GenBank. Nucleic Acids Research, 28, 15–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., & Fagan, P. (2002). The protein data bank. Acta Crystallographica Section D: Biological Crystallography, 58, 899–907.

    Article  CAS  Google Scholar 

  • Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., & Bairoch, A. (2007). UniProtKB/Swiss-prot: The manually annotated section of the UniProt knowledge base. In Plant bioinformatics (Methods and Protocols, pp. 89–112). New York: Springer.

    Google Scholar 

  • Buss, A. D., Cox, B., & Waigh, R. D. (1995). Natural products as leads for new pharmaceuticals. Burger’s Medicinal Chemistry and Drug Discovery, 1, 847–900.

    Google Scholar 

  • Cao, J., Xia, X., Chen, X., Xiao, J., & Wang, Q. (2013). Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities. Food and Chemical Toxicology, 51, 242–250.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Anderson, J. B., DeWeese-Scott, C., Fedorova, N. D., Geer, L. Y., He, S., Hurwitz, D. I., Jackson, J. D., Jacobs, A. R., Lanczycki, C. J., & Liebert, C. A. (2003). MMDB: Entrez’s 3D-structure database. Nucleic Acids Research, 31, 474–477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, H., Cho, S. Y., Pak, H. J., Kim, Y., Choi, J. Y., Lee, Y. J., Gong, B. H., Kang, Y. S., Han, T., Choi, G., & Cho, Y. (2017). NPCARE: Database of natural products and fractional extracts for cancer regulation. Journal of Cheminformatics, 9, 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarkson, C., Maharaj, V. J., Crouch, N. R., Grace, O. M., Pillay, P., Matsabisa, M. G., Bhagwandin, N., Smith, P. J., & Folb, P. I. (2004). In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. Journal of Ethnopharmacology, 92, 177–191.

    Article  PubMed  Google Scholar 

  • Cochrane, G., Karsch-Mizrachi, I., & Takagi, T. (2015). Sequence database collaboration IN. The international nucleotide sequence database collaboration. Nucleic Acids Research, 44, D48–D50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DiMasi, J. A., Hansen, R. W., & Grabowski, H. G. (2003). The price of innovation: New estimates of drug development costs. Journal of Health Economics, 22, 151–185.

    Article  PubMed  Google Scholar 

  • Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109, 69–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., & Shaw, D. E. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749.

    Article  PubMed  CAS  Google Scholar 

  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb viewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  • Harishchander, A. (2017). A review on application of bioinformatics in medicinal plant research. Proteomics and Bioinformatics – Open Access Journals, 1, 000104.

    Google Scholar 

  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, P. P. (2002). Natural medicines comprehensive database. Journal of the Medical Library Association, 90, 114.

    PubMed Central  Google Scholar 

  • Kaminuma, E., Kosuge, T., Kodama, Y., Aono, H., Mashima, J., Gojobori, T., Sugawara, H., Ogasawara, O., Takagi, T., Okubo, K., & Nakamura, Y. (2010). DDBJ progress report. Nucleic Acids Research, 39, D22–D27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kann, M. G. (2009). Advances in translational bioinformatics: Computational approaches for the hunting of disease genes. Briefings in Bioinformatics, 11, 96–110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lou, S. K., Wong, K. L., Li, M., But, P. P., Tsui, S. K., & Shaw, P. C. (2010). An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics, 11, 402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loub, W. D., Farnsworth, N. R., Soejarto, D. D., & Quinn, M. L. (1985). NAPRALERT: Computer handling of natural product research data. Journal of Chemical Information and Computer Sciences, 25, 99–103.

    PubMed  CAS  Google Scholar 

  • Mary, J. A., Priyadharshini, K. C., Amal, G. P., Ramya, G., Nithya, R., Ambika, M. B., & Shenbagarathai, R. (2012). MEDDB: A medicinal plant database developed with the information gathered from tribal people in and around Madurai, Tamil Nadu. Bioinformation, 8, 391–393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2017). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports 206995.

    Google Scholar 

  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mount, D. M. (2004). Bioinformatics: Sequence and genome analysis (2nd ed.pp. 1–8). New York: Cold Spring Harbor Lab Press.

    Google Scholar 

  • Mumtaz, A., Ashfaq, U. A., ul Qamar, M. T., Anwar, F., Gulzar, F., Ali, M. A., Saari, N., & Pervez, M. T. (2017). MPD3: A useful medicinal plants database for drug designing. Natural Product Research, 31, 1228–1236.

    Article  PubMed  CAS  Google Scholar 

  • Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48, 443–453.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, M., Lundegaard, C., Lund, O., & Petersen, T. N. (2010). CPHmodels-3.0-remote homology modeling using structure-guided sequence profiles. Nucleic Acids Research, 38, W576–W581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearson, W. R. (1990). Rapid and sensitive sequence comparison with FASTP and FASTA. Methods in Enzymology, 183, 63–98.

    Google Scholar 

  • Sharma, V., Munjal, A., & Shanker, A. (2016). A text book of bioinformatics (2nd ed.p. 350). Meerut: Rastogi Publications.

    Google Scholar 

  • Smith K (2013) A brief history of NCBI’s formation and growth. The NCBI handbook.

    Google Scholar 

  • Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147, 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Strohl, W. R. (2000). The role of natural products in a modern drug discovery program. Drug Discovery Today, 5, 39–41.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tota, K., Rayabarapu, N., Moosa, S., Talla, V., Bhyravbhatla, B., & Rao, S. (2013). InDiaMed: A comprehensive database of Indian medicinal plants for diabetes. Bioinformation, 9, 378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Webb, B., & Sali, A. (2014). Protein structure modeling with MODELLER. Protein Structure Prediction, 2014, 1–15.

    Google Scholar 

  • Wen, L., Wu, D., Jiang, Y., Prasad, K. N., Lin, S., Jiang, G., He, J., Zhao, M., Luo, W., & Yang, B. (2014). Identification of flavonoids in litchi (Litchi chinensis Sonn.) leaf and evaluation of anticancer activities. Journal of Functional Foods, 6, 555–563.

    Article  CAS  Google Scholar 

  • Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S., & Feolo, M. (2007). Database resources of the national center for biotechnology information. Nucleic Acids Research, 36, D13–D21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wootton, J. C. (2002). Development of HerbMed®: An interactive, evidence-based herbal database. Advances in Phytomedicine, 1, 55–60.

    Article  CAS  Google Scholar 

  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12, 7–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yanuar, A., Mun’im, A., Lagho, A. B., Syahdi, R. R., Rahmat, M., & Suhartanto, H. (2011). Medicinal plants database and three dimensional structure of the chemical compounds from medicinal plants in Indonesia. International Journal of Computer Science Issues, 8, 180–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Shanker, A. (2018). Biological Databases for Medicinal Plant Research. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_29

Download citation

Publish with us

Policies and ethics