Skip to main content

Somaclonal Variations and Their Applications in Medicinal Plant Improvement

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Plant tissue culture is an important tool for various investigations in many plants including medicinal plants. Different techniques are used to in vitro cultivate medicinal plants for mass propagation, conservation, and secondary metabolites production. They include micropropagation, axillary bud, shoot culture, root, and callus culture, organogenesis, somatic embryogenesis, and cell suspension culture. For the production of phytochemicals, cell suspension and callus cultures are most preferred followed by root and shoot cultures and somatic embryogenesis. However, plant tissue culture may generate somaclonal variations as a result of gene mutation and/or changes in epigenetic marks, particularly with highly differentiated explants and callus stage passage. On one hand, the occurrence of somaclonal variation may be an obstacle for both in vitro propagation and germplasm conservation, while it is exploited in many crop plant improvements on the other hand. In the present chapter, possible somaclonal variation following medicinal plant tissue culture and their consequent implication in the regulatory network of secondary metabolites production are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyari, M., Nasr, N., Soorni, J., & Sadhu, D. (2016). Enhanced accumulation of Scopoletin in cell suspension culture of Spilanthes acmella Murr. Using precursor feeding. Biological and Applied Sciences, 59, 1–7.

    Google Scholar 

  • Ahmed, S. A., & Baig, M. M. V. (2014). Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi Journal of Biological Sciences, 21, 499–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alatzas, A., & Foundouli, A. (2006). Distribution of ubiquitinated histone H2A during plant cell differentiation in maize root and dedifferentiation in callus culture. Plant Science, 171, 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Al-Sane, K. O., Shibli, R. A., Freihat, N. M., & Hammouri, M. K. (2005). Cell suspension culture and secondary metabolites production in African violet (Saintpaulia ionantha Wendl.). Jordan Journal of Agricultural Sciences, 1(1), 84–92.

    Google Scholar 

  • Amini, S.-A., Shabani, L., Afghani, L., Jalpour, Z., & Sharifi-Tehrani, M. (2014). Squalestatin-induced production of taxol and baccatin in cell suspension culture of yew (Taxus baccata L.). Turkish Journal of Biology, 38, 528–536.

    Article  CAS  Google Scholar 

  • Arya, D., Patni, V., & Kant, U. (2007). In vitro propagation and quercetin quantification in callus cultures of Rasna (Puchea lanceolata Oliver & Hiern.). Indian Journal of Biotechnology, 7, 383–387.

    Google Scholar 

  • Ataei-Azimi, A., Hashemloian, B. D., Ebrahimzadeh, H., & Majd, A. (2008). High in vitro production of ant-canceric indole alkaloids from periwinkle (Catharanthus roseus) tissue culture. African Journal of Biotechnology, 7(16), 2834–2839.

    CAS  Google Scholar 

  • Bansal, Y. K., & Bharati, A. J. (2014). In vitro production of flavonoids: A review. World Journal of Pharmaceutical Sciences, 3(6), 508–533.

    Google Scholar 

  • Berdasco, M., Alcazar, R., Garcıa-Ortiz, M. V., et al. (2008). Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One, 3, e3306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besher, S., Al-Ammouri, Y., & Murshed, R. (2014). Production of tropan alkaloids in the in vitro and callus cultures of Hyoscyamus aureus and their genetic stability assessment using ISSR markers. Physiology and Molecular Biology of Plants, 20(3), 343–349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bharti, P., Mahajan, M., Vishwakarma, A. K., Bhardwaj, J., & Yadav, S. K. (2015). AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. Journal of Experimental Botany, 66(19), 5959–5969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharyya, P., Kumaria, S., Diengdoh, R., & Tandon, P. (2014). Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene, 2, 489–504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borpuzari, P. P., & Borthakur, M. (2016). Effect of plant growth regulators and explants sources on somatic embryogenesis of matured tissue of the anticancerous medicinal plant Plumbago rosea. Journal of Medicinal Plants Studies, 4(5), 165–170.

    Google Scholar 

  • Chakradhar, T., & Pullaiah, T. (2014). In vitro regeneration through adventitious buds in Wattakaka volubilis, a rare medicinal plant. African Journal of Biotechnology, 13(1), 55–60.

    Article  Google Scholar 

  • Chandrasekhar, T., Hussain, T. M., Gopal, G. R., & Rao, J. V. S. (2006). Somatic embryogenesis of Tylophora indica (Burm.f.) Merril., an important medicinal plant. International Journal of Applied Science and Engineering, 4(1), 33–40.

    Google Scholar 

  • Chávez-Hernández, E. C., Alejandri-Ramírez, N. D., Juárez-González, V. T., & Dinkova, T. D. (2015). Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis. Frontiers in Plant Science, 6, 555. https://doi.org/10.3389/fpls.2015.00555.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chawla, H. S. (2002). Introduction to plant biotechnology. Enfield: Science Publishers.

    Google Scholar 

  • Chen, C.-C., Chang, H.-C., Kuo, C.-L., Agrawal, D. C., Wu, C.-R., & Tsay, H.-S. (2014). In vitro propagation and analysis of secondary metabolites in Glossogyne tenuifolia (Hsiang-Ju) – a medicinal plant native to Taiwan. Botanical Studies, 55(45), 1–9.

    Google Scholar 

  • Chen-Guang, Z., Jing-Li, Y., Li-Kun, L., Cheng-Nan, L., De-An, X., & Cheng-Hao, L. (2011). Research progress in somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus maxim.). Journal of Medicinal Plant Research, 5(33), 7140–7145.

    Google Scholar 

  • Chu, Z., Chen, J., Xu, H., Dong, Z., Chen, F., & Cui, D. (2016). Identification and comparative analysis of microRNA in wheat (Triticum aestivum L.) callus derived from mature and immature embryos during in vitro culture. Frontiers in Plant Science, 7, 1302. https://doi.org/10.3389/fpls.2016.01302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang, S. J., Chen, C. L., Chen, J. J., Chou, W. Y., & Sung, J. M. (2009). Detection of somaclonal variation in micro-propagated Echinacea purpurea using AFLP marker. Scientia Horticulturae, 120(1), 121–126.

    Article  CAS  Google Scholar 

  • Daniel, A., Kalidass, C., & Mohan, V. R. (2010). In vitro multiple shoot induction through axillary bud of Ocimum basilicum L. an important medicinal plant. International Journal of Biological Technology, 1(1), 24–28.

    CAS  Google Scholar 

  • De Souza, A. V., et al. (2007). In vitro propagation of Lychnophora pinaster (Asteraceae): A threatened endemic medicinal plant. Hsc, 42(7), 1665–1669.

    Google Scholar 

  • Debnath, M., Malik, C. P., & Bisen, P. S. (2006). Micropropagation: A tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology, 7, 33–49.

    Article  PubMed  CAS  Google Scholar 

  • Deventhiran, M., John, W. W., Sheik, N. M. M., Jaikumar, K., Saravanan, P., & Anand, D. (2017). In vitro propagation and comparative phytochemical analysis of wild plant and micropropagated Cleome rutidosperma DC. International Journal of Pharmacognosy and Phytochemical Research, 9(2), 253–257.

    Google Scholar 

  • Dohling, S., Kumaria, S., & Tandon, P. (2012). Multiple shoot induction from axillary bud cultures of the medicinal orchid, Dendrobium longicornu. AoB Plants, 2012, pls032. https://doi.org/10.1093/aobpla/pls032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duncan, R. R. (1997). Tissue culture-induced variation and crop improvement. Advances in Agronomy, 58, 201–240.

    Article  CAS  Google Scholar 

  • Faizal, A., Lambert, E., Foubert, K., Apers, S., & Danny, G. (2011). In vitro propagation of four saponin producing Maesa species. Plant Cell Tissue and Organ Culture, 106, 215–223.

    Article  CAS  Google Scholar 

  • Esmaeili, F., Shooshtari, L., Ghorbanpour, M., & Etminan, A. (2014). Assessment of somaclonal variation in Plantago major using molecular markers. Journal of Biodiversity and Environmental Sciences (JBES), 5(4), 402–408.

    Google Scholar 

  • Ferreyra, M. L., Falcone, R. S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(222), 1–15.

    Google Scholar 

  • Gould, A. R. (1986). Factors controlling generations of variability in vitro. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics in plants. 3. Plant regeneration and genetic variability (pp. 549–567). Orlando: Academic.

    Chapter  Google Scholar 

  • Govinden-Soulange, J., Somanah, D., Ranghoo-Sanmukhiya, M., Boodia, N., & Rajkomar, B. (2010). Detection of somaclonal variation in micropropagated Hibiscus sabdariffa L. using RAPD markers. University of Mauritius Research Journal, 1–13.

    Google Scholar 

  • Goyal, A. K., Pradhan, S., Basistha, B. C., & Sen, A. (2015). Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech, 5, 473–482.

    Article  PubMed  Google Scholar 

  • Hao, Y. J., & Deng, X. X. (2003). Genetically stable regeneration of apple plants from slow growth. Plant Cell, Tissue and Organ Culture, 72, 253–260.

    Article  CAS  Google Scholar 

  • Haque, S. M., & Ghosh, B. (2013). High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants. Botanical Studies, 54(46), 1–10.

    Google Scholar 

  • Hu, J., Gao, X., Liu, J., Xie, C., & Li, J. (2008). Plant regeneration from petiole callus of Amorphophallus albus and analysis of somaclonal variation of regenerated plants by RAPD and ISSR markers. Botanical Studies, 49, 189–197.

    CAS  Google Scholar 

  • Hu, J.-B., Li, Q., & Li, J. (2011). ISSR analysis of somaclonal variation in callus-derived plants of Amorphophalus rivieri Durieu. Acta Biologica Cracoviensia Series Botanica, 53(1), 120–124.

    Google Scholar 

  • Ilahi, I., Rahim, F., & Jabeen, M. (2007). Enhanced clonal propagation and alkaloid biosynthesis in cultures of Rauwolfia. Pakistan Journal of Biological Sciences, 13(1), 45–56.

    Google Scholar 

  • Iriawati, Rahmawati, A., & Esyanti, R. R. (2014). Analysis of secondary metabolite production in somatic embryo of Pasak Bumi (Eurycoma longifolia Jack.). Procedia Chemistry, 13, 112–118.

    Article  CAS  Google Scholar 

  • Iyer, R. I., Jayaraman, G., & Ramesh, A. (2009). Direct somatic embryogenesis in Myristica malabarica Lam., an endemic, threatened medicinal species of Southern India and detection of phytochemicals of potential medicinal value. Indian Journal of Science and Technology, 2(7), 11–17.

    Google Scholar 

  • Joshee, N., Biswas, B. K., & Yadav, A. K. (2007). Somatic embryogenesis and plant development in Centella asiatica L., a highly prized medicinal plant of the tropics. Hortscience, 42(3), 633–637.

    CAS  Google Scholar 

  • Joshi P and Dhawan (2007) Axillary multiplication of Swertia chirayita (Roxb. Ex Fleming) H. Karst., a critically endangered medicinal herb of temperate Himalayas. In Vitro Cellular and Developmental Biology Plant 43(6):631–638.

    Google Scholar 

  • Kaeppler, S. M., Kaeppler, H. F., & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology, 43, 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Karalija, E., & Parić, A. (2011). The effect of BA and IBA on the secondary metabolite production by shoot culture of Thymus vulgaris L. Biologica Nyssana, 2(1), 29–35.

    Google Scholar 

  • Karp, A. (1994). Origins, causes and uses of variation in plant tissue cultures. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 139–152). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Kaul, S., Das, S., & Srivastava, P. S. (2013). Micropropagation of Ajuga bracteosa, a medicinal herb. Physiology and Molecular Biology of Plants, 19(2), 289–296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaushal, S., Sidana, A., & Dev, K. (2014). In vitro plant production through apical meristem culture of Gentiana kurroo Royle. Journal of Medicinal Plants Studies, 3(1), 04–09.

    Google Scholar 

  • Khanpour-Ardestani, N., Sharifi, M., & Behmanesh, M. (2015). Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: An in vitro approach for acteoside production. Cytotechnology, 67, 475–485.

    Article  PubMed  CAS  Google Scholar 

  • Kher, M. M., Joshi, D., Nekkala, S., Nataraj, M., & Raykundaliya, D. P. (2014). Micropropagation of Pluchea lanceolata (Olier & Hiern.) using nodal explant. Journal of Horticultural Research, 22(1), 35–39.

    Article  CAS  Google Scholar 

  • Kour, B., Kour, G., Kaul, S., & Dhar, M. K. (2014). In Vitro mass multiplication and assessment of genetic stability of In Vitro raised Artemisia absinthium L. plants using ISSR and SSAP molecular markers. Advances in Botany, 2014, 1–7.

    Article  Google Scholar 

  • Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(54), 1–18.

    Google Scholar 

  • Kshirsagar, P. R., Chavan, J. J., Umdale, S. D., Nimbalkar, M. S., Dixt, G. B., & Gaikwad, N. B. (2015). Highly efficient in vitro regeneration, establishment of callus and cell suspension cultures and RAPD analysis of regenerants of Swertia lawii Burkill. Biotechnology Reports, 6, 79–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, V., Moyo, M., & Staden, J. V. (2017). Somatic embryogenesis in Hypoxis hemerocallidea: An important African medicinal plant. South African Journal of Botany, 108, 331–336.

    Article  Google Scholar 

  • Kurdyukov, S., Mathesius, U., Nolan, K. E., Sheahan, M. B., Goffard, N., Carroll, B. J., & Rose, R. J. (2014). The 2HA line of Medicago truncatula has characteristics of an epigenetic mutant that is weakly ethylene insensitive. BMC Plant Biology, 14, 174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kutchin, T. M. (1998). Molecular genetics of plant alkaloid biosynthesis. In G. Cordell (Ed.), The alkaloids (Vol. 50, pp. 257–316). San Diego: Academic.

    Google Scholar 

  • Laibach, F. (1929). Ectogenesis in plants: Methods and genetic possibilities of propagating embryos otherwise dying in the seed. Journal of Heredity, 20, 201–208.

    Article  Google Scholar 

  • Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation: A novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60, 197–214.

    Article  PubMed  CAS  Google Scholar 

  • Law, R. D., & Suttle, J. C. (2005). Chromatin remodeling in plant cell culture: Patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. Plant Physiology and Biochemistry, 43, 527–534.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Arellano, M., Dhir, S., Albino, N. C., Santiago, A., & Morris T Dhir, S. K. (2015). Somatic embryogenesis and plantlet regeneration from protoplast culture of Stevia rebaudiana. British Biotechnology Journal, 5(1), 1–12.

    Article  CAS  Google Scholar 

  • Lucchesini, M., Bertoli, A., Mensuali-Sodi, A., & Pistelli, L. (2009). Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds. Scientia Horticulturae, 122, 484–490.

    Article  CAS  Google Scholar 

  • Luo, Y.-C., Zhou, H., Li, Y., Chen, J.-Y., Yang, J.-H., Chen, Y.-Q., & Qu, L.-H. (2006). Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. Febes Letters, 580, 5111–5116.

    Article  CAS  Google Scholar 

  • Mahdieh, M., Noori, M., & Hoseinkhani, S. (2015). Studies of in vitro adventitious root induction and flavonoid profiles in Rumex crispus. Advanced Life Sciences, 5(3), 53–57.

    Google Scholar 

  • Maraschin, M., Sugui, J. A., Wood, K. V., Bonham, C., Buchi, D. F., Cantao, M. P., Carobrez, S. G., Araujo, P. S., Peixoto, M. L., Verpoorte, R., & Fontana, J. D. (2002). Somaclonal variation: A morphogenetic and biochemical analysis of Mandevilla velutina cultured cells. Brazilian Journal of Medical and Biological Research, 35, 633–643.

    Article  PubMed  CAS  Google Scholar 

  • Meena, M. K., Singh, N., & Patni, V. (2012). In vitro multiple shoot induction through axillary bud of Cocculus hirsutus (L.) Diels: A threatened medicinal plant. African Journal of Biotechnology, 11(12), 2952–2956.

    Google Scholar 

  • Miguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. Journal of Experimental Botany, 62(11), 3713–3725.

    Article  PubMed  CAS  Google Scholar 

  • Mittal, J., & Sharma, M. M. (2017). Enhanced production of berberine in In vitro regenerated cell of Tinospora cordifolia and its analysis through LCMS QToF. 3 Biotech, 7(25), 1–12.

    Google Scholar 

  • Mohanty, S., Panda, M. K., Subudhi, E., Acharya, L., & Nayak, S. (2008). Genetic stability of micropropagated ginger derived from axillary bud through cytophotometric and RAPD analysis. Zeitschrift für Naturforschung, 63c, 747–754.

    Article  Google Scholar 

  • Moon, H.-K., Kim, Y.-W., Hong, Y.-P., & Park, S.-Y. (2013). Improvement of somatic embryogenesis and plantlet conversion in Oplopanax elatus, an endangered medicinal woody plant. Springerplus, 2(428), 1–8.

    Google Scholar 

  • Mulabagal, V., & Tsay, H.-S. (2004). Plant cell cultures – An alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2(1), 29–48.

    Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and Bioassy with tobacco tissue culture. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Nadha, H. K., Kumar, R., Sharma, R. K., Anand, M., & Sood, A. (2011). Evaluation of clonal fidelity of in vitro raised plants of Guadua angustifolia Kunth using DNA-based markers. Journal of Medicinal Plant Research, 5(23), 5636–5641.

    CAS  Google Scholar 

  • Nagesh, K. S., Shanthamma, C., & Pullaiah, T. (2010). Somatic embryogenesis and plant regeneration from callus cultures of Curculigo orchioides Gaertn. Indian Journal of Biotechnology, 9, 408–413.

    CAS  Google Scholar 

  • Nakka, S., & Devendra, B. N. (2012). A rapid in vitro propagation and estimation of secondary metabolites for in vivo and in vitro propagated Crotalaria species, a Fabaceae member. Journal of Microbiology, Biotechnology and Food Sciences, 2(3), 897–916.

    Google Scholar 

  • Nandhini, R. S., Bayyapureddy, A., & Reji, J. V. (2015). An enhanced In Vitro production of Saponins and other bioactives from Bacopa monnieri L. Penn. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(3), 446–451.

    CAS  Google Scholar 

  • Ngezahayo, F., & Liu, B. (2014). Axillary bud proliferation approach for plant biodiversity conservation and restoration. International Journal of Biodiversity, 2014, 1–9.

    Article  Google Scholar 

  • Nikam, T. D., & Savant, R. S. (2009). Multiple shoot regeneration and alkaloid cerpegin accumulation in callus culture of Ceropegia juncea Roxb. Physiology and Molecular Biology of Plants, 15(1), 71–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obae, S. G., Klandorf, H., & West, T. P. (2011). Growth characteristics and Ginsenosides production of In Vitro tissues of American ginseng, Panax quinquefolius L. Hortscience, 46(8), 1136–1140.

    CAS  Google Scholar 

  • Opabode, J. T., Akinyemiju, A. O., & Ayeni, O. O. (2011). Plant regeneration via somatic embryogenesis from immature leaves in Tetrapleura tetraptera (SCHUM. & THONN.) TAUB. Archives of Biological Sciences, 63(4), 1135–1145.

    Article  Google Scholar 

  • Panda, M. K., Mohanty, S., Subudi, E., Acharya, L., & Nayak, S. (2007). Assessment of genetic stability of micropropagated plants of Curcuma longa L. by cytophotometry and RAPD analyses. International Journal of Integrative Biology, 1(3), 189–195.

    CAS  Google Scholar 

  • Pant, B. (2013). Medicinal orchids and their uses: Tissue culture a potential alternative for conservation. African Journal of Plant Science, 7(10), 448–467.

    Article  Google Scholar 

  • Pant, B. (2014). Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants. Advances in Experimental Medicine and Biology, 808, 25–39.

    Article  PubMed  CAS  Google Scholar 

  • Parida, R., Mohanty, S., & Nayak, S. (2011). Evaluation of genetic fidelity of in vitro propagated GREATER GALANGAL (Alpinia galanga L.) using DNA based markers. International Journal of Plant, Animal and Environmental Sciences, 1(3), 123–133.

    CAS  Google Scholar 

  • Pathak, S., Mishra, B. K., Misra, P., Misra, P., Joshi, V. K., Shukla, S., & Trivedi, P. K. (2012). High frequency somatic embryogenesis, regeneration and correlation of alkaloid biosynthesis with gene expression in Papaver somniferum. Plant Growth Regulation, 68, 17–25.

    Article  CAS  Google Scholar 

  • Patil, K. S., & Bhalsing, S. R. (2015). Efficient micropropagation and assessment of genetic fidelity of Boerhaavia diffusa L- High trade medicinal plant. Physiology and Molecular Biology of Plants, 21(3), 425–432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poehlman, J. M. (1987). Plant cell and tissue culture applications in plant breeding. In Breed field crop (pp. 148–170).

    Chapter  Google Scholar 

  • Prakash, E., Khan, S. V., Meru, E., & Rao, K. R. (2001). Somatic embryogenesis in Pimpinella tirupatiensis Bal. and subr., an endangered medicinal plant of Tirumala hills. Current Science, 81(9, 10), 1239–1242.

    Google Scholar 

  • Ptak, A., Tahchy, A. E., Skrzypek, E., Wójtowicz, T., & Laurain-Mattar, D. (2013). Influence of auxins on somatic embryogenesis and alkaloid accumulation in Leucojum aestivum callus. Central European Journal of Biology, 8(6), 591–599.

    CAS  Google Scholar 

  • Puhan, P., & Rath, S. P. (2012). In vitro propagation of Aegle marmelos (L.) corr., a medicinal plant through axillary bud multiplication. Advances in Bioscience and Biotechnology, 3, 121–125.

    Article  CAS  Google Scholar 

  • Qiao, M., & Xiang, F. (2013). A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro. Plant Signaling & Behavior, 8(3), e23479. https://doi.org/10.4161/psb.23479.

    Article  CAS  Google Scholar 

  • Reddy, S. H., Chakravarthi, M., & Chandrashekara, K. N. (2012). In vitro multiple shoot induction through axillary bud of Asclepias curassavica L. – A valuable medicinal plant. International Journal of Scientific Research, 2(8), 1–7.

    Article  Google Scholar 

  • Roopadarshini, V., & Gayatri, M. C. (2012). Isolation of somaclonal variants for morphological and biochemical traits in Curcuma longa (turmeric). Research in Plant Biology, 2(3), 31–37.

    Google Scholar 

  • Sahai, A., Shahzad, A., & Anis, M. (2010). High frequency plant production via shoot organogenesis and somatic embryogenesis from callus in Tylophora indica, an endangered plant species. Turkish Journal of Botany, 34, 11–20.

    CAS  Google Scholar 

  • Sahoo, S., & Rout, G. R. (2014). Plant regeneration from leaf explants of Aloe barbadensis mill. And genetic fidelity assessment through DNA markers. Physiology and Molecular Biology of Plants, 20(2), 235–240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saini, R. K., Shetty, N. P., Giridhar, P., & Ravishankar, G. A. (2012). Rapid in vitro regeneration method for Moringa oleifera and performance evaluation of field grown nutritionally enriched tissue cultured plants. 3 Biotech, 2, 187–192.

    Article  PubMed Central  Google Scholar 

  • Saravanan, S., Sarvesan, R., & Vinod, M. S. (2011). Identification of DNA elements involved in somaclonal variants of Rauvolfia serpentina (L.) arising from indirect organogenesis as evaluated by ISSR analysis. Indian Journal of Science and Technology, 4(10), 1241–1245.

    Google Scholar 

  • Sasikumar, S., Raveendar, S., Premkumar, A., Ignacimuthu, S., & Agastian, P. (2009). Micropropagation of Baliospermum montanum (wild.) Muell. Arg.- a threatened medicinal plant. Indian Journal of Biotechnology, 8, 223–226.

    CAS  Google Scholar 

  • Sebastinraj, J., & Sidique, K. M. I. (2011). In vitro rapid clonal propagation of Aristolochia bracteolata lam. (Aristolochiaceae)- A valuable medicinal plant. World Journal of Agricultural Sciences, 7(6), 653–658.

    CAS  Google Scholar 

  • Senapati, S. K., Aparajita, S., & Rout, G. (2013). Micropropagation and assessment of genetic stability in Celastrus paniculatus: An endangered medicinal plant. Biologia, 68(4), 627–632.

    Article  CAS  Google Scholar 

  • Sharma, M. M., Verma, R. N., Singh, A., & Batra, A. (2014). Assessment of clonal fidelity of Tylophora indica (Burm. f.) Merrill “in vitro” plantlets by ISSR molecular markers. Springer Plus, 3(400), 1–9.

    Google Scholar 

  • Sharmin, S. A., Alam, M. J., Sheikh, M. M. I., Sarker, K. K., Khalekuzzaman, M., Haque, M. A., Alam, M. F., & Alam, I. (2014). Somatic embryogenesis and plant regeneration in Wedelia calendulacea less. An endangered medicinal plant. Brazilian Archives of Biology and Technology, 57(3), 394–401.

    Article  CAS  Google Scholar 

  • Shooshtari, L., Omidi, M., Majidi, E., Naghavi, M., Ghorbanpour, M., & Etminan, A. (2013). Assessment of somaclonal variation of regenerated Ducrosia anethifolia plants using AFLP markers. Journal of Horticultural Science and Biotechnology, 17(4), 99–106.

    Google Scholar 

  • Singh, P., Singh, A., Shukla, A. K., Singh, L., Pande, V., & Nailwal, T. K. (2009). Somatic embryogenesis and in vitro regeneration of an endangered medicinal plant sarpgandha (Rauvolfia serpentina L.). Life Science Journal, 6(2), 57–62.

    Google Scholar 

  • Sivanandhan, G., Vasudevan, V., Selvaraj, N., Lim, Y. P., & Ganapathi, A. (2015). L-Dopa production and antioxidant activity in Hybanthus enneaspermus (L.) F. Muell regeneration. Physiology and Molecular Biology of Plants, 1(3), 395–406.

    Article  CAS  Google Scholar 

  • Smulders, M. J. M., & de Klerk, G. J. (2011). Epigenetics in plant tissue culture. Plant Growth Regulation, 63, 137–146.

    Article  CAS  Google Scholar 

  • Soni, M., & Kaur, R. (2014). Rapid in vitro propagation, conservation and analysis of genetic stability of Viola pilosa. Physiology and Molecular Biology of Plants, 20(1), 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Srinivas, D., & Reddy, K. J. (2017). Plant regeneration studies in Euphorbia fusiformis through somatic embryo genesis. Biotechnology Journal International, 17(2), 1–6.

    Article  Google Scholar 

  • Srivastava, P., Sisodia, V., & Chaturvedi, R. (2011). Effect of culture conditions on synthesis of triterpenoids in suspension cultures of Lantana camara L. Bioprocess and Biosystems Engineering, 34, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Sudarshana, M. S., Niranjan, M. H., & Girisha, S. T. (2008). In vitro flowering, somatic embryogenesis and regeneration in Boerhaavia diffusa Linn. – a medicinal plant. Global Journal of Biotechnology and Biochemistry, 3(2), 83–86.

    Google Scholar 

  • Szyrajew, K., Bielewicz, D., Dolata, J., Wójcik, A. M., Nowak, K., Szczygieł-Sommer, A., Szweykowska-Kulinska, Z., Jarmolowski, A., & Gaj, M. D. (2017). MicroRNAs are intensively regulated during induction of somatic embryogenesis in Arabidopsis. Frontiers in Plant Science, 8, 18. https://doi.org/10.3389/fpls.2017.00018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanurdzic, M., Vaughn, M. W., Jiang, H., Lee, T.-J., Slotkin, R. K., Sosinski, B., Thompson, W. F., Doerge, R. W., & Martienssen, R. A. (2008). Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biology, 6, e302.

    Article  PubMed Central  CAS  Google Scholar 

  • Taskin, H., Baketmur, G., Kurul, M., & Buyukalaca. (2013). Use of tissue culture techniques for producing virus-free plant in garlic and their identification through real time PCR. The Scientific World Journal, 781282, 1–5.

    Article  CAS  Google Scholar 

  • Thangavel, K., Maridass, M., Sasikala, M., & Ganesan, V. (2008). In vitro micropropagation of Talinum portulacifolium L. through axillary bud culture. Ethnobot Leaflets, 12, 413–418.

    Google Scholar 

  • Trevor, A. T. (2007). History of plant tissue culture. Molecular Biotechnology, 37, 169–180.

    Article  CAS  Google Scholar 

  • Us-Camas, R., Rivera-Solís, G., Duarte-Aké, F., & De-la-Peña, C. (2014). In vitro culture: An epigenetic challenge for plants. Plant Cell, Tissue and Organ Culture, 118, 187–201.

    Article  CAS  Google Scholar 

  • Viehmannova, I., Bortlova, Z., Vitamvas, J., Cepkova, P. H., Eliasova, K., Svobodova, E., & Travnickova, M. (2014). Assessment of somaclonal variation in somatic embryo-derived plants of yacon [Smallanthus sonchifolius (Poepp. and Endl.) H. Robinson] using intersimple sequence repeat analysis and flow cytometry. Electronic Journal of Biotechnology, 17, 102–106.

    Article  CAS  Google Scholar 

  • Wang, J., Qian, J., Yao, L., & Lu, Y. (2015). Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresources and Bioprocessing, 2(5), 1–9.

    Google Scholar 

  • Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C., & Qi, Y. (2010). DNA methylation mediated by a MicroRNA pathway. Molecular Cell, 38, 465–475.

    Article  PubMed  CAS  Google Scholar 

  • Yaacob, J. S., Taha, R. M., Jaafar, N., Hasni, Z., Elias, H., & Mohamed, N. (2013). Callus induction, plant regeneration and somaclonal variation in in vivo and in vitro grown white shrimp plant (Justicia betonica Linn.). Australian Journal of Crop Science, 7(2), 281–288.

    CAS  Google Scholar 

  • Yadav, K., Kumar, S., & Singh, N. (2014). Genetic fidelity assessment of Spilanthes acmella (L.) Murr. By RAPD and ISSR markers assay. Indian Journal of Biotechnology, 13, 274–277.

    CAS  Google Scholar 

  • Yang, J., Wu, S., & Li, C. (2013a). High efficiency secondary somatic embryogenesis in Hovenia dulcis Thunb. through solid and liquid cultures. The Scientific World Journal, 2013, Article ID 718754 6 pages.

    Google Scholar 

  • Yang, X., Wang, L., Yuan, D., Lindsey, K., & Zhang, X. (2013b). Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. Journal of Experimental Botany, 64(6), 1521–1536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, F.-S., Lv, Y.-l., Zhao, Y., & Guo, S.-X. (2009). Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of Anoectochilus formosanus Hayata, a rare and threatened medicinal Orchidaceae plant. Journal of Zhejiang University. Science. B, 14(9), 785–792.

    Article  CAS  Google Scholar 

  • Zhang, F., Yali, L. V., Dong, H., & Guo, S. (2010). Analysis of genetic stability through Intersimple sequence repeats molecular markers in micropropagated plantlets of Anoectochilus formosanus H AYATA, a medicinal plant. Biological & Pharmaceutical Bulletin, 33(3), 384–388.

    Article  CAS  Google Scholar 

  • Zhang, M., Dong, Y., Nie, L., Lu, M., Fu, C., & Yu, L. (2015). High-throughput sequencing reveals miRNA effects on the primary and secondary production properties in long-term subcultured Taxus cells. Frontiers in Plant Science, 6, 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ngezahayo, F. (2018). Somaclonal Variations and Their Applications in Medicinal Plant Improvement. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_23

Download citation

Publish with us

Policies and ethics