Skip to main content

Tissue Culture in Mulberry (Morus spp.) Intending Genetic Improvement, Micropropagation and Secondary Metabolite Production: A Review on Current Status and Future Prospects

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Mulberry (Morus spp.) is a woody, perennial, highly heterozygous, fast-growing plant and grown mainly for its foliage worldwide under various agroclimatic zones (tropical, subtropical and temperate) of Asia, Africa and the Americas. Mulberry leaves are the sole food source for monophagous and domesticated mulberry silkworm, Bombyx mori L. Moreover, mulberry fruits are fleshy, succulent and delicious berries. The fruits are low in calories and contain health-promoting phytonutrients such as polyphenols, minerals and vitamins having medicinal importance for its antioxidant, antitumor, neuroprotective activities and hypo-lipidemic/macrophage activating effects. Genetic improvement of mulberry is mainly aimed for improving productivity and quality of leaf for silk production. Conventional plant breeding techniques including tissue culture and molecular biology methods are employed in mulberry genetic improvement programmes to develop varieties for improved leaf productivity and biotic/abiotic stress tolerance. This review focuses on various tissue culture approaches such as in vitro regeneration, micropropagation, genetic transformation, somaclonal variation, in vitro selection, suspension culture, and much more which often supplement the traditional breeding methods. Further, characterization and production of secondary metabolites from mulberry tissues through suspension culture which are becoming a blooming option for commercial exploration of bioactive compounds have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, S. (2002). Genetic transformation and plant regeneration studies in Morus alba L. Doctoral thesis. Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, India.

    Google Scholar 

  • Agarwal, S., Kanwar, K., & Sharma, D. R. (2004). Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Scientia Horticulturae, 102, 359–368.

    Article  Google Scholar 

  • Ahmad, P., Sharma, S., & Srivastava, P. S. (2007). In vitro selection of NaHCO3 tolerant cultivars of Morus alba (local and Sujanpuri) in response to morphological and biochemical parameters. Horticultural Science (Prague), 34(3), 114–122.

    Article  CAS  Google Scholar 

  • Akram, M., & Aftab, F. (2012). Efficient micropropagation and rooting of king white mulberry (Morus macroura Miq.) var. laevigata from nodal explants of mature tree. Pakistan Journal of Botany, 44, 285–289.

    CAS  Google Scholar 

  • Bhatnagar, S., & Khurana, P. (2003). Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K-2: A time phased screening strategy. Plant Cell Reports, 21(7), 669–675.

    PubMed  CAS  Google Scholar 

  • Bhatnagar, S., Kapur, A., & Khurana, P. (2001). TDZ mediated differentiation in commercially valuable Indian mulberry, Morus indica cultivars K2 and DD. Plant Biotechnology, 18, 61–65.

    Article  CAS  Google Scholar 

  • Bhatnagar, S., Kapur, A., & Khurana, P. (2002). Evaluation of parameters for high efficiency gene transfer via particle bombardment in Indian mulberry. Indian Journal of Experimental Biology, 40, 1387–1393.

    PubMed  CAS  Google Scholar 

  • Bhau, B. S., & Wakhlu, A. K. (2001). Effect of genotype, explant type and growth regulators on organogenesis in Morus alba. Plant Cell, Tissue and Organ Culture, 66, 25–29.

    Article  CAS  Google Scholar 

  • Bhau, B. S., & Wakhlu, A. K. (2003). Rapid micropropagation of five cultivars of mulberry. Biologia Plantarum, 46, 349–355.

    Article  Google Scholar 

  • Bhojwani, S. S., & Razdan, M. K. (1996). Plant tissue culture: theory and practice. A revised edition. Amsterdam: Elsevier.

    Google Scholar 

  • Chakraborti, S. P., Vijayan, K., Roy, B. N., & Quadri, S. M. H. (1998). In vitro induction in tetraploidy in mulberry (Morus alba L). Plant Cell Reports, 17, 794–803.

    Article  Google Scholar 

  • Chattopadhyay, S., Doss, S. G., Halder, S., Ali, A. K., & Bajpai, A. K. (2011). Comparative micropropagation efficiency of diploid and triploid mulberry (Morus alba cv. S1) from axillary bud explants. African Journal of Biotechnology, 10(79), 18153–18159.

    Article  Google Scholar 

  • Checker, V. G., Chibbar, A. K., & Khurana, P. (2012). Stress-inducible expression of barley hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Research, 21(5), 939–957.

    Article  CAS  PubMed  Google Scholar 

  • Chitra, D. S. V., & Padmaja, G. (2005). Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Scientia Horticulturae, 106, 593–602.

    Google Scholar 

  • Chitra, D. S. V., Chinthapalli, B., & Padmaja, G. (2014). Efficient regeneration system for genetic transformation of mulberry (Morus indica L. cultivar S-36) using in vitro derived shoot meristems. American Journal of Plant Sciences, 5, 1–6.

    Google Scholar 

  • Choudhary, R., Chaudhury, R., & Malik, S. K. (2015). Development of an efficient regeneration and rapid clonal multiplication protocol for three different Morus species using dormant buds as explants. The Journal of Horticultural Science and Biotechnology, 90(3), 245–253.

    Article  CAS  Google Scholar 

  • Cocking, E. C. (1960). A method for the isolation of plant protoplasts and vacuoles. Nature, 187, 927–929.

    Article  Google Scholar 

  • Das, B. C., Prasad, D. N., & Sikdar, A. K. (1970). Colchicine induced tetraploids of mulberry. Caryologia, 23, 283–293.

    Article  Google Scholar 

  • Das, M., Chauhan, H., Chibbar, A., Haq, Q. M. R., & Khurana, P. (2011). High efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K-2, by constitutive and inducible expression of tobacco Osmotin. Transgenic Research, 20(2), 231–246.

    Article  CAS  PubMed  Google Scholar 

  • Datta, R. K. (2000). Mulberry cultivation and utilization in India. In FAO electronic conference on mulberry for animal production (Morus L.). Available via http://www.fao.org/DOCREP/005/X9895E/x9895e04.htm#TopOfPage. Accessed 10 Jan 2018.

  • Dhanyalakshmi, K. H., Naika, M. B. N., Sajeevan, R. S., Mathew, O. K., Shafi, K. M., Sowdhamini, R., & Nataraja, K. N. (2016). An approach to function annotation for proteins of unknown function (PUFs) in the transcriptome of Indian mulberry. PLoS One, 11(3), e0151323. https://doi.org/10.1371/journal.pone.0151323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doss, S. G., Vijayan, K., Chakraborti, S. P., & Roy, B. N. (1998). Studies on flowering time and its relation with geographic origin in mulberry. Indian Journal of Forestry, 24(2), 203–205.

    Google Scholar 

  • Dunwell, J. M. (2010). Haploids in flowering plants: Origins and exploitation. Plant Biotechnology Journal, 8, 377–424.

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi, N. K., Suryanarayana, N., Sikdar, A. K., Susheelamma, B. N., & Jolly, M. S. (1989). Cytomorphological studies in triploid mulberry evolved by diploidization of female gamete cells. Cytologia, 54, 13–19.

    Article  Google Scholar 

  • El-Mawla, A. A. M. A., Mohamed, K. M., & Mostafa, A. M. (2011). Induction of biologically active flavonoids in cell cultures of Morus nigra and testing their hypoglycemic efficacy. Scientia Pharmaceutica, 79(4), 951–961.

    Article  CAS  Google Scholar 

  • Enomoto, S. (1987). Preservation of genetic resource of mulberry by means of tissue culture. Japanese Agriculture Research Quarterly, 21, 205–210.

    Google Scholar 

  • George, E. F. (2008). Plant tissue culture procedure- background. In E. F. George, M. A. Hall, & G. J. De Klerk (Eds.), Plant propagation by tissue culture (pp. 1–28). Dordrecht: Springer.

    Google Scholar 

  • Germaná, M. A. (2011). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture, 104, 283–300.

    Article  Google Scholar 

  • Gogoi, G., Borua, P. K., & Al-Khayri, J. M. (2017). Improved micropropagation and in vitro fruiting of Morus indica L. (K-2 cultivar). Journal, Genetic Engineering & Biotechnology, 15, 249–256.

    Article  Google Scholar 

  • Hoshino, Y., Miyashita, T., & Thomas, T. D. (2011). In vitro culture of endosperm and its application in plant breeding: Approaches to polyploidy breeding. Scientia Horticulturae, 130(1), 1–8.

    Article  CAS  Google Scholar 

  • Inyai, C., Udomsin, O., Komaikul, J., Tanaka, H., Sritularak, B., & Putalun, W. (2015, January 27–30). Enhancement mulberroside A production in Morus alba L. cell cultures by calcium alginate immobilization and elicitation. Paper presented at the International conference on herbal and traditional medicine (HTM-2015), Pullman Raja Orchid, Khonkaen, Thailand.

    Google Scholar 

  • Jain, A. K., & Datta, R. K. (1992). Shoot organogenesis and plant regeneration in mulberry (Morus bombycis Koidz): Factors influencing morphogenetic potential in callus cultures. Plant Cell, Tissue and Organ Culture, 29, 43–50.

    Article  CAS  Google Scholar 

  • Jianzhong, T., Chengfu, L., Hongli, W., & Mingqi, C. (2001). Transgenic plants via transformation of glycinin gene to mulberry. Journal of Agricultural Biotechnology, 9(4), 400–402.

    Google Scholar 

  • Johnson, A. A. T., & Veilleuz, R. E. (2010). Somatic hybridization and applications in plant breeding. In J. Janick (Ed.), Plant breeding reviews (Vol. 20, pp. 167–225). Oxford: Wiley.

    Google Scholar 

  • Kamareddi, S., Patil, V. C., & Nadaf, S. A. (2013). Development of synthetic seeds in mulberry (Morus indica L.) cv. M-5 and evaluation under controlled conditions. Research Journal of Agricultural Science, 4, 221–223.

    Google Scholar 

  • Katagiri, K. (1989a). Callus induction in culture of mulberry pollen. Journal of Sericulture Science of Japan, 58, 527–529.

    Google Scholar 

  • Katagiri, K. (1989b). Colony formation in culture of mulberry mesophyll protoplasts. Journal of Sericulture Science of Japan, 58, 267–268.

    Google Scholar 

  • Katagiri, K., & Modala, V. (1991). Effect of sugar and sugar alcohols on the division of mulberry pollen in tissue culture. Journal of Sericulture Science of Japan, 60, 514–516.

    CAS  Google Scholar 

  • Katagiri, K., & Modala, V. (1993). Induction of calli and organlike structures in isolated pollen culture of mulberry, Morus australis POIRET. Journal of Sericulture Science of Japan, 62, 1–6.

    CAS  Google Scholar 

  • Katagiri, K., Nakajima, K., & Yokoyama, T. (1982). The triploidy in mulberry varieties from Thailand. Journal of Sericulture Science of Japan, 51, 539–540.

    Google Scholar 

  • Kavyashree, R. (2007). A repeatable protocol for in vitro micropropagation of mulberry variety S54. Indian Journal of Biotechnology, 6, 385–388.

    Google Scholar 

  • Khurana, P., & Checker, V. G. (2011). The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Reports, 30, 825–838.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. R., Patel, K. R., & Thorpe, T. A. (1985). Regeneration of mulberry plantlets through tissue culture. Botanical Gazette, 46(3), 335–340.

    Article  Google Scholar 

  • Kim, J. W., Kim, S. U., Lee, H. S., Kim, I., Ahn, M. Y., & Ryu, K. S. (2003). Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatation with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance chromatography. Journal of Chromatography. A, 1002, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., Parvatam, G., & Ravishankar, G. A. (2009). AgNO3: A potential regulator of ethylene activity and plant growth modulator. Electronic Journal of Biotechnology, 12(2), 8–9.

    Article  CAS  Google Scholar 

  • Lakshmi Sita, G., & Ravindran, S. (1991). Gynogenic plants from ovary cultures of mulberry (Morus indica). In J. Prakash & K. L. M. Pierik (Eds.), Horticulture new techniques and applications (pp. 225–229). London: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Lal, S., Gulyani, V., & Khurana, P. (2008). Over expression of hva1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Research, 17, 651–663.

    Article  CAS  PubMed  Google Scholar 

  • Lalitha, N., Kih, S., Banerjee, R., Chattopadhya, S., Saha, A. K., & Bindroo, B. B. (2013). High frequency multiple shoot induction and in vitro regeneration of mulberry (Morus indica L. cv. S-1635). International Journal of Advanced Research, 1, 22–26.

    Google Scholar 

  • Lee, Y., Lee, D.-E., Lee, H. S., Kim, S.-K., Lee, W. S., Kim, S.-H., & Kim, M.-W. (2011). Influence of auxins, cytokinins, and nitrogen on production of rutin from callus and adventitious roots of the white mulberry tree (Morus alba L.). Plant Cell, Tissue and Organ Culture, 105(1), 9–19.

    Article  CAS  Google Scholar 

  • Lu, M.-C. (2002). Micropropagation of Morus latifolia Poilet using axillary buds from mature trees. Scientia Horticulturae, 96, 329–341.

    Article  CAS  Google Scholar 

  • Machii, M. (1990). Leaf disc transformation of mulberry plant (Morus alba L.) by Agrobacterium Ti plasmid. Journal of Sericulture Science of Japan, 59, 105–110.

    Google Scholar 

  • Machii, M., Sung, G. B., Yamanuchi, H., & Koyama, A. (1996). Transient expression of GUS gene introduced into mulberry plant by particle bombardment. Journal of Sericulture Science of Japan, 65, 503–506.

    CAS  Google Scholar 

  • Mallick, P., Ghosh, S., Chattaraj, S., & Sikdar, S. R. (2016). Isolation of mesophyll protoplast from Indian mulberry (Morus alba L) cv. S 1635. Journal of environmental Sociobiology, 13(2), 217–222.

    Google Scholar 

  • Mamrutha, H. M., Mogili, T., Lakshmi, K. J., Rama, N., Kosma, D., Udaya Kumar, M., Jenks, M. A., Karaba, N., & Nataraja, K. N. (2010). Leaf cuticular wax amount and crystal morphology regulate post-harvest water loss in mulberry (Morus species). Plant Physiology and Biochemistry, 48, 690–696.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S. (2014). Genetic analysis of traits controlling water use efficiency and rooting in mulberry (Morus spp.) by molecular markers. PhD thesis, University of Mysore, Mysuru, India.

    Google Scholar 

  • Naik, V. G., Thumilan, B., Sarkar, A., Dandin, S. B., Pinto, M. V., & Sivaprasad, V. (2014). Development of genetic linkage map of mulberry using molecular markers and identification of QTLs linked to yield and yield contributing traits. Sericologia, 54(4), 221–229.

    Google Scholar 

  • Narasimhan, R., Dhruva, B., Paranjpe, S. V., Kulkarni, D. D., & Mascarenhas, A. F. (1970). Tissue culture of some woody species. Proceedings of the Indian Academy of Sciences B, 71(5), 204–212.

    CAS  Google Scholar 

  • Narayan, P., Chakraborty, S. P., & Rao, G. S. (1989). Regeneration of plantlets from the callus of stem segments of mature plants of Morus alba L. Proceedings of the Indian National Science Academy B, 55, 469–472.

    Google Scholar 

  • Narayan, P., Chakroborti, S. P., Roy, B. N., & Sinha, S. S. (1993, March 4–5). In vitro regeneration of plant from internodal callus of Morus alba L. and isolation of genetic variant. In: Abstracts of Seminar on Plant Cytogenetics in India, University of Calcutta, Kolkata, India, pp. 188–192.

    Google Scholar 

  • Niino, T. (1995). Cryopreservation of germplasm of mulberry (Morus spp.). In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry (Vol. 32, pp. 102–113). Berlin: Springer.

    Google Scholar 

  • Ohnishi, T., & Kiyama, S. (1987). Effects of change in temperature, pH, Ca ion concentration in the solution used for protoplast fusion on the improvement of the fusion ability of mulberry protoplasts. Journal of Sericulture Science of Japan, 56, 418–421.

    CAS  Google Scholar 

  • Ohnishi, T., & Tanabe, K. (1989). On the protoplast fusion of mulberry and paper mulberry by electrofusion method. Journal of Sericulture Science of Japan, 58, 353–354.

    Google Scholar 

  • Ohyama, K. (1970). Tissue culture in mulberry tree. Japan Agricultural Research Quarterly, 5, 30–34.

    Google Scholar 

  • Oka, S., & Tewary, P. K. (2000). Induction of hairy roots from hypocotyls of mulberry (Morus indica L.) by Japanese wild strains of Agrobacterium rhizogenes. Journal of Sericulture Science of Japan, 69, 13–19.

    CAS  Google Scholar 

  • Pattnaik, S. K., & Chand, P. K. (1997). Rapid clonal propagation of three mulberries, Morus cathyana Hemsl., M. lhou Koiz. And M. serrata Roxb. Through in vitro culture of apical shoot buds and nodal explants from mature trees. Plant Cell Reports, 16, 503–508.

    Google Scholar 

  • Pattnaik, S. K., Sahoo, Y., & Chand, P. K. (1995). Efficient plant retrieval from alginate encapsulated vegetative buds of mature Mulberry trees. Scientia Horticulturae, 61, 227–239.

    Article  Google Scholar 

  • Raghunath, M. K., Nataraj, K. N., Meghana, J. S., Sanjeevan, R. S., Rajan, M. V., & Qadri, S. M. H. (2013). In vitro plant regeneration of Morus indica L. cv. V-1 using leaf explants. American Journal of Plant Sciences, 4(10), 2001–2005.

    Google Scholar 

  • Rao, A. A., Chaudhury, R., Kumar, S., Velu, D., Saraswat, R. P., & Kamble, C. K. (2007). Cryopreservation of mulberry germplasm core collection and assessment of genetic stability through ISSR markers. International Journal of Industrial Entomology, 15, 23–33.

    Google Scholar 

  • Rao, A. A., Chaudhury, R., Malik, S. K., Kumar, S., Ramachandra, R., & Quadri, S. M. H. (2009). Mulberry biodiversity conservation through cryopreservation. In Vitro Cellular & Developmental Biology. Plant, 45, 639–649.

    Article  Google Scholar 

  • Rao, P. J. S. V. V. N. H., Nuthan, D., & Krishna, K. S. (2010). A protocol for in vitro regeneration of rainfed mulberry varieties through callus phase. European Journal of Biological Science, 2, 80–86.

    Google Scholar 

  • Saeed, B., Das, M., Haq, Q. M. R., & Khurana, P. (2015). Over expression of beta carotene hydroxylase-1 (bch1) in mulberry, Morus indica cv. K-2, confers tolerance against high-temperature and high irradiance stress induced damage. Plant Cell, Tissue and Organ Culture, 120(3), 1003–1015.

    Article  CAS  Google Scholar 

  • Saeed, B., Baranwal, V. K., & Khurana, P. (2016). Comparative transcriptomics and comprehensive marker resource development in mulberry. BMC Genomics, 17, 98. https://doi.org/10.1186/s12864-016-2417-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha, S., Adhikari, S., Dey, T., & Ghosh, P. (2016). RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene, 7, 7–15.

    Article  PubMed  Google Scholar 

  • Sajeevan, R. S., Singh, S. J., Nataraja, K. N., & Shivanna, M. B. (2011). An efficient in vitro protocol for multiple shoot induction in mulberry, Morus alba L variety V1. International Research Journal of Plant Science, 2(8), 254–261.

    Google Scholar 

  • Sajeevan, R. S., Nataraja, K. N., Shivashankara, K. S., Pallavi, N., Gurumurthy, D. S., & Shivanna, M. B. (2017). Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Frontiers in Plant Science, 8, 418. https://doi.org/10.3389/fpls.2017.00418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos, M. D. O., Romano, E., Yotoko, K. S. C., Tinoco, M. L. P., Dias, B. B. A., & Aragão, F. J. L. (2005). Characterisation of the cacao somatic embryogenesis receptor-like Kinase (SERK) gene expressed during somatic embryogenesis. Plant Science, 168, 723–729.

    Article  CAS  Google Scholar 

  • Sarkar, T. (2014). Development of transgenic resistance to abiotic stress in groundnut using AtDREB1A gene through Agrobacterium mediated genetic transformation. PhD thesis, Saurashtra University, Rajkot, Gujarat, India.

    Google Scholar 

  • Sarkar, T., Radhakrishnan, T., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2014). Heterologous expression of AtDREB1A gene in transgenic peanut conferred tolerance to drought and salinity stresses. PLoS One, 9(12), e110507. https://doi.org/10.1371/journal.pone.0110507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar, T., Radhakrishnan, T., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2016). Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) crop conferred tolerance to soil-moisture deficit stress. Frontiers in Plant Science, 7, 935. https://doi.org/10.3389/fpls.2016.00935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar, T., Mogili, T., & Sivaprasad, V. (2017). Improvement of abiotic stress adaptive traits in mulberry (Morus spp.): An update on biotechnological interventions. 3 Biotech, 7, 214. https://doi.org/10.1007/s13205-017-0829-z.

  • Seki, H., & Oshikane, K. (1959). Studies in polyploid mulberry trees III. The valuation of breeded polyploid mulberry leaves and the results of feeding silkworms on them. Res Rep Fac Text Seric Shinshu Univ, 9, 6–15.

    Google Scholar 

  • Sethi, M., Bose, S., Kapur, A., & Rangaswamy, N. S. (1992). Embryo differentiation in anther culture of mulberry. Indian Journal of Experimental Biology, 30, 1146–1148.

    Google Scholar 

  • Shajahan, A., Kathiravan, K., & Ganapathi, A. (1995). Induction of embryo-like structures by liquid culture in mulberry (Morus alba L.). Breeding Science, 45, 413–417.

    Google Scholar 

  • Shajahan, A., Kathiravan, K., & Ganapathi, A. (1997). Selection of salt tolerant mulberry callus tissue culture from cultured hypocotyls segments. In A. I. Khan (Ed.), Frontiers in plant science (pp. 311–313). Hyderabad: The Book Syndicate.

    Google Scholar 

  • Shoukang, L., Dongfeng, J., & Jun, Q. (1987). In vitro production of haploid plants from mulberry (Morus) anther culture. Scientia Sinica, 30, 853–863.

    Google Scholar 

  • Smetanska, I. (2008). Production of secondary metabolites using plant cell cultures. Advances in Biochemical Engineering/Biotechnology, 111, 197–228.

    Google Scholar 

  • Sugimura, Y., Miyazaki, J., Yonebayashi, K., Kotani, E., & Furusawa, T. (1999). Gene transfer by electroporation into protoplasts isolated from mulberry call. Journal of Sericulture Science of Japan, 68, 49–53.

    Google Scholar 

  • Susheelamma, B. N., Shekhar, K. R., Sarkar, A., Rao, M. R., & Datta, R. K. (1996). Genotypes and hormonal effects on callus formation and regeneration in mulberry. Euphytica, 90, 25–29.

    CAS  Google Scholar 

  • Takebe, I., Labib, G., & Melchers, G. (1971). Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften, 58(6), 318–320.

    Article  Google Scholar 

  • Tewary, P. K., Sharma, A., Raghunath, M. K., & Sarkar, A. (2000). In vitro response of promising mulberry (Morus sp.) genotypes for tolerance to salt and osmotic stresses. Plant Growth Regulation, 30(1), 17–21.

    Article  CAS  Google Scholar 

  • Thomas, T. D. (1999). In vitro production of haploids and triploids of Morus alba L. PhD thesis. University of Delhi, Delhi, India.

    Google Scholar 

  • Thomas, T. D. (2002). Advances in mulberry tissue culture. The Journal of Plant Biology, 45(1), 7–21.

    Article  Google Scholar 

  • Thomas, T. D. (2003). Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonary explants of mulberry. Biologia Plantarum, 46(4), 529–533.

    Article  CAS  Google Scholar 

  • Thomas, T. D., Bhatnagar, A. K., Razdan, M. K., & Bhojwani, S. S. (1999). A reproducible protocol for the production of gynogenic haploids of mulberry, Morus alba L. Euphytica, 110, 169–173.

    Article  Google Scholar 

  • Thomas, T. D., Bhatnagar, A. K., & Bhojwani, S. S. (2000). Production of triploid plants of mulberry (Morus alba L.) by endosperm culture. Plant Cell Reports, 19, 395–399.

    Article  CAS  Google Scholar 

  • Thorpe, T. A. (2007). History of plant tissue culture. Molecular Biotechnology, 37(2), 169–180.

    Article  CAS  PubMed  Google Scholar 

  • Thumilan, B. M., Kadam, N. N., Biradar, J., Sowmya, H. R., Mahadeva, A., Madhura, J. N., Makarla, U., Khurana, P., & Sreeman, S. M. (2013). Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species. BMC Plant Biology, 13, 194. https://doi.org/10.1186/1471-2229-13-194.

    Article  CAS  Google Scholar 

  • Thumilan, B. M., Sajeevan, R. S., Biradar, J., Madhuri, T., Nataraja, K. N., & Sreeman, S. M. (2016). Development and characterization of genic SSR markers from Indian mulberry transcriptome and their transferability to related species of Moraceae. PLoS One, 11(9), e0162909. https://doi.org/10.1371/journal.pone.0162909.

    Article  CAS  Google Scholar 

  • Tikader, A., & Dandin, S. B. (2005). Biodiversity, geographical distribution, utilization and conservation of wild mulberry Morus serrata Roxb. Caspian Journal of Environmental Sciences, 3, 179–186.

    Google Scholar 

  • Tipton, J. (1994). Relative drought resistance among selected southwestern landscape plants. Journal of Arboriculture, 20, 151–155.

    Google Scholar 

  • Umate, P. (2010). Mulberry improvements via plastid transformation and tissue culture engineering. Plant Signaling & Behavior, 5(7), 785–787.

    Article  CAS  Google Scholar 

  • Umate, P., Rao, A. V., Yashodhara, V., Rama Swamy, N., & Sadanandam, A. (2000a). Evaluation of specific parameters in the isolation of protoplasts from mesophyll cells of three mulberry cultivars. Sericologia, 40, 469–474.

    Google Scholar 

  • Umate, P., Rao, A. V., Yashodhara, V., Rama Swamy, N., & Sadanandam, A. (2000b). A simple protocol for rapid and efficient isolation of protoplast from callus cultures of mulberry (Morus indica L.) cv. S13. Sericologia, 40, 647–651.

    Google Scholar 

  • Umate, P., Venugopal Rao, K., Kiranmayee, K., Jaya Sree, T., & Sadanandam, A. (2005). Plant regeneration of mulberry (Morus indica) from mesophyll-derived protoplasts. Plant Cell, Tissue and Organ Culture, 82, 289–293.

    Article  CAS  Google Scholar 

  • Vasil, I. K. (2008). A history of plant biotechnology: From the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Reports, 27(9), 1423.

    Article  CAS  PubMed  Google Scholar 

  • Vijayan, K. (2010). The emerging role of genomic tools in mulberry (Morus) genetic improvement. Tree Genetics & Genomes, 6, 613–625.

    Article  Google Scholar 

  • Vijayan, K., Chakraborti, S. P., & Roy, B. N. (1998). Regeneration of plantlets through callus culture in mulberry. Indian Journal of Plant Physiology, 3, 310–313.

    Google Scholar 

  • Vijayan, K., Chakraborti, S. P., & Roy, B. N. (2000). Plant regeneration from leaf explants of mulberry: Influence of sugar, genotype and 6-benzyladenine. Indian Journal of Experimental Biology, 38(5), 504–508.

    PubMed  CAS  Google Scholar 

  • Vijayan, K., Chakraborti, S. P., & Ghosh, P. D. (2003). In vitro screening of mulberry for salinity tolerance. Plant Cell Reports, 22, 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Vijayan, K., Chakraborti, S. P., & Ghosh, P. D. (2004). Screening of mulberry (Morus spp.) for salinity tolerance through in vitro seed germination. Indian Journal of Biotechnology, 3, 47–51.

    Google Scholar 

  • Vijayan, K., Tikader, A., & da Silva, J. A. T. (2011a). Application of tissue culture techniques propagation and crop improvement in mulberry (Morus spp). Tree and Forestry Science and Biotechnology, 5(1), 1–13.

    Google Scholar 

  • Vijayan, K., Srivastava, P. P., Raghunath, M. K., & Saratchandra, B. (2011b). Enhancement of stress tolerance in mulberry. Scientia Horticulturae, 129(4), 511–519.

    Article  Google Scholar 

  • Wei, Z., Xu, Z., Huang, J., Xu, N., & Huang, M. (1994). Plants regenerated from mesophyll protoplasts of white mulberry. Cell Research, 4, 183–189.

    Article  Google Scholar 

  • Yile, P., & Oshigane, K. (1998). Chromosome number of wild species in Morus cathayana Hemsl and Morus wittiorum Handel-Mazett distribution in China. Journal of Sericulture Science of Japan, 67, 151–153.

    Google Scholar 

  • Yong, W. T., Henry, E. S., & Abdullah, J. O. (2010). Enhancers of Agrobacterium-mediated transformation of Tibouchina semidecandra selected on the basis of GFP expression. Tropical Life Sciences Research, 21(2), 115–130.

    PubMed  PubMed Central  Google Scholar 

  • Zaki, M., Kaloo, Z. A., & Sofi, M. (2011). Micropropagation of Morus nigra L. from nodal segments with axillary buds. World Journal of Agricultural Sciences, 7, 496–503.

    CAS  Google Scholar 

  • Zenk, M. H. (1978). The impact of plant cell cultures on industry. In E. A. Thorpe (Ed.), Frontiers of plant tissue culture (pp. 1–14). Calgary: The International Association of Plant Tissue Culture.

    Google Scholar 

  • Zenk, M. H., El-Shagi, H., Arens, H., Stäckigt, J., Weiler, E. W., & Deus, B. (1977). Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In W. Barz, E. Reinhard, & M. H. Zenk (Eds.), Plant tissue culture and its biotechnological application (pp. 27–43). Berlin: Springer.

    Chapter  Google Scholar 

  • Zhang, J., Yang, T., Li, R.-F., Zhou, Y., Pang, Y.-L., Liu, L., Fang, R.-J., Zhao, Q.-L., Li, L., & Zhao, W.-G. (2016). Association analysis of fruit traits in mulberry species (Morus L.). The Journal of Horticultural Science and Biotechnology. https://doi.org/10.1080/14620316.2016.1209989.

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In T. Scheper (Ed.), Plant cells (Advances in biochemical engineering/biotechnology, Vol. 72, 1st ed., pp. 1–26). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, T., Mogili, T., Gandhi Doss, S., Sivaprasad, V. (2018). Tissue Culture in Mulberry (Morus spp.) Intending Genetic Improvement, Micropropagation and Secondary Metabolite Production: A Review on Current Status and Future Prospects. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_21

Download citation

Publish with us

Policies and ethics