Skip to main content

Biotechnological Approaches for Genetic Improvement of Fenugreek (Trigonella foenum-graceum L.)

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Fenugreek (Trigonella foenum-graecum L.) is one of the important medicinal plants of ancient medicinal systems due to its high nutraceutical and pharmaceutical properties. Seeds and leaves of Fenugreek contain phytochemicals like diosgenin and trigonelline. It is a cultivated plant of the modern world for medicinal uses, an edible vegetable, and a forage plant. Advancement in industrial and biotechnological techniques for the isolation of phytochemicals increase the demand of Fenugreek, and its breeding programs are based on improving the secondary metabolites compared to other uses. Recent advancement in modern biotechnological approaches enables researchers to develop elite cultivars of desired traits in a short time. Application of modern techniques like artificial mutations under in vitro conditions, characterization using molecular markers, and development of successful plant tissue culture techniques, genetic transformation techniques, and functional genomics studies have significant potential to improve Fenugreek traits. The study highlights the application of biotechnological approaches used for the development of elite Fenugreek traits for the researchers for future breeding programs. Furthermore, the research gap and areas to improve research have been highlighted in this present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

B5:

Gamborg medium

EMS:

Ethyl-methanesulfonate

IAA:

Indole acetic acid

IBA:

Indole-3-butyric acid

IPA:

Indole-3-propionic acid

MAS:

Marker-assisted selection

MMS:

Methyl-methanesulfonate

MS:

Murashige and Skoog medium

NAA:

α-Naphthaleneacetic acid

NaN3/SA:

Sodium azide

OD:

Optical density

PCR:

Polymerase chain reaction

PEG:

Polyethylene glycol

PGRs:

Plant growth regulators

QTL:

Quantitative trait locus

TDZ:

Thidiazuron

UV:

Ultravoilet

WP:

Woody plant

ϒ-rays:

Gamma rays

References

  • Aasim, M., Khawar, K. M., & Ozcan, S. (2009). In vitro shoot regeneration of Fenugreek (Trigonela foenumgraecum L.) Am-Eurasian. Journal of Sustainable Agriculture, 3, 135–138.

    Google Scholar 

  • Aasim, M., Hussain, N., Umer, E. M., et al. (2010). In vitro shoot regeneration of Fenugreek (Trigonella foenum-graecum L.) using different cytokinins. African Journal of Biotechnology, 9, 7174–7179.

    CAS  Google Scholar 

  • Aasim, M., Khawar, K. M., Yalcin, G., et al. (2014). Current trends in Fenugreek biotechnology and approaches towards its improvement. The American Journal of Social Issues and Humanities, 4, 127–136.

    Google Scholar 

  • Acharya, S. N., Thomas, J. E., & Basu, S. K. (2006a). Fenugreek: An “old world” crop for the “new world”. Biodiversity, 7, 27–30.

    Article  Google Scholar 

  • Acharya, S. N., Srichamroen, A., Basu, S., et al. (2006b). Improvement in the nutraceutical properties of Fenugreek (Trigonella foenum-graecum L.). Songklanakarin. Journal of Science and Technology, 28, 1–9.

    Google Scholar 

  • Acharya, S. N., Thomas, J. E., & Basu, S. K. (2008). Fenugreek, an alternative crop for semiarid regions of North America. Crop Science, 48, 841–853.

    Article  CAS  Google Scholar 

  • Afsharie, E., Ranjbar, G. A., & Kazemitabar, S. K., et al. (2011). Callus induction, somatic embryogenesis and plant regeneration in Fenugreek (Trigonella foenum-graecum L.). Young Researchers Club of Islamic Azad Universıty of Shiraz Branch, Shiraz (in Persian).

    Google Scholar 

  • Agarwal, M., & Jain, S. C. (2015). In vitro regulation of bioactive compounds in Trigonella species by mutagenic treatment. Journal of Plant Sciences, 3, 40–44.

    Google Scholar 

  • Ahari, D. S., Hassandokht, M. R., Kashi, A. K., et al. (2014). Evaluation of genetic diversity in Iranian Fenugreek (Trigonella foenum-graecum L.) landraces using AFLP markers. Signal Processing: An International Journal, 30, 155–171.

    Google Scholar 

  • Ahmadiani, A., Javan, M., Semnanian, S., et al. (2001). Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum L leaves extract in the rat. Journal of Ethnopharmacology, 2, 283–286.

    Article  Google Scholar 

  • Ahmed, F. A., Ghanem, S. A., Reda, A. A., et al. (2000). Effect of some growth regulators and subcultures on callus proliferation and trigonelline content of Fenugreek (Trigonella foenum-graecum). Bulletin of the National Research Centre (Cairo), 25, 35–46.

    CAS  Google Scholar 

  • Alalwani, B. A., & Alrubaie, E. A. (2016). The effect of water stress and magnetic water in the production of trignolline in callus of Fenugreek (Trigonella foenum graecum L.) plant. International Journal of PharmTech Research, 9, 237–245.

    Google Scholar 

  • Al-Habori, M., & Raman, A. (2002). Pharmacological properties. In G. Petropoulos (Ed.), Fenugreek-the genus Trigonella (pp. 162–182). London: Taylor & Francis.

    Google Scholar 

  • Al-Jasass, F. M., & Al Jasser, M. S. (2012). Chemical composition and fatty acid content of some spices and herbs under Saudi Arabia conditions. Scientific World Journal, 2012, 858982.

    Article  Google Scholar 

  • Al-Maamari, I. T., Al-Sadi, A. M., & Al-Saady, N. A. (2014). Assessment of genetic diversity in Fenugreek (Trigonella foenum graecum L.) in Oman. International Journal of Agriculture and Biology, 16, 813–818.

    Google Scholar 

  • Al-Mahdawe, M. M., Al-Mallah, M. K., & Al-Attrakchii, A. O. (2013). Somatic embryogenesis and plant regeneration from cotyledonary node’s calli of Trigonella foenum-graecum L. Jornal of Biotechnology Research Center, 7, 29–35.

    Google Scholar 

  • Al-Meshal, I. A., Parmar, N. S., Tariq, M., et al. (1995). Gastric anti-ulcer activity in rats of Trigonella foenum graecum (Hu-Lu-Pa). Fitoterapia, 56, 232–235.

    Google Scholar 

  • Amin, A., Alkaabi, A., Al-Falasi, S., et al. (2005). Chemopreventive activities of Trigonella foenum-graecum (Fenugreek) against breast cancer. Cell Biology International, 8, 687–694.

    Article  Google Scholar 

  • Anis, A., & Wani, A. A. (1997). Caffeine induced morpho-cytological variability in Fenugreek, Trigonella foenum-graecum L. Cytologia, 62, 343–349.

    Article  CAS  Google Scholar 

  • Aswar, U., Bodhankar, S. L., Mohan, V., et al. (2010). Effect of furostanol glycosides from Trigonella foenum-graecum on the reproductive system of male albino rats. Phytotherapy Research, 24, 1482–1488.

    Article  CAS  PubMed  Google Scholar 

  • Auerbach, C. (1961). Chemicals and their effects. Proceedings for symposium on mutation and plant breeding. Cornell University, 25, 585–621.

    Google Scholar 

  • Azam, M., & Biswas, A. K. (1989). Callus culturing its maintenance and cytological variations in Trigonella foenum-graecum. Current Science, 58, 844–847.

    Google Scholar 

  • Balch, P. A. (2003). Prescription for dietary wellness. New York: Penguin.

    Google Scholar 

  • Baloch, F. S., Alsaleh, A., Shahid, M. Q., et al. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One, 12(1), e0167821. https://doi.org/10.1371/journal.pone.0167821.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bashir, S., Wani, A. A., & Nawchoo, I. A. (2013a). Studies on mutagenic effectiveness and efficiency in Fenugreek (Trigonella foenum-graecum L.). African Journal of Biotechnology, 12, 2437–2440.

    CAS  Google Scholar 

  • Bashir, S., Wani, A. A., & Nawchoo, I. A. (2013b). Mutagenic sensitivity of Gamma rays, EMS and Sodium azide in Trigonella foenumgraecum L. Science Research Reporter, 3, 20–26.

    Google Scholar 

  • Basu, S. K. (2006). Seed production technology for Fenugreek (Trigonella foenum-graecum L.) In the Canadian Prairies (Ms Thesis). University of Lethbridge, Faculty of Arts Sci, Lethbridge, Alberta, Canada.

    Google Scholar 

  • Basu, S. K., Acharya, S. N., & Thomas, J. E. (2008). Genetic improvement of Fenugreek (Trigonella foenum-graecum L.) through EMS induced mutation breeding for higher seed yield under Western Canada prairie conditions. Euphytica, 160, 249–258.

    Article  Google Scholar 

  • Basu, A., Basu, S. K., Kumar, A., et al. (2014). Fenugreek (Trigonella foenum-graecum L.), a potential new crop for Latin America. The American Journal of Social Issues and Humanities, 4, 1–2.

    Google Scholar 

  • Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., et al. (2013). Comparative study on hypocholesterolemic and antioxidant activities of various extracts of Fenugreek seeds. Food Chemistry, 2, 1448–1453.

    Article  CAS  Google Scholar 

  • Betty, R. (2008). Spice India; The many healing virtues of Fenugreek. pp. 17–19.

    Google Scholar 

  • Blumenthal, M., Goldberg, A., & Brinckmann, J. (2000). Herbal medicine: Expanded commission E monographs (pp. 103–133). Newton: American Botanical Council, Integrative Medicine Communications.

    Google Scholar 

  • Brain, K. R., & Williams, M. H. (1983). Evidence for an alternative rate from sterol to sapogenin in suspension cultures from Trigonella foenumgraecum. Plant Cell Reports, 2, 7–10.

    CAS  PubMed  Google Scholar 

  • Burdak, A., Jakhar, M. L., Nagar, P., et al. (2017). In Vitro regeneration in Fenugreek (Trigonella foenum-graecum L.). Research Journal of Chemical & Environmental Sciences, 5, 65–70.

    Google Scholar 

  • Cerdon, C., Rahier, A., Taton, M., et al. (1945). Effect of diniconazole on sterol composition of roots and cell suspension cultures of Fenugreek. Phytochemistry, 39, 883–893.

    Article  Google Scholar 

  • Chatterjee, S., Variyar, P. S., & Sharma, A. (2010). Bioactive lipid constituents of Fenugreek. Food Chemistry, 119(1), 349–353.

    Article  CAS  Google Scholar 

  • Chaudhary, A. K., & Singh, V. V. (2001). An induced detenninate mutant in Fenugreek (Trigonella foenum-graecum L.). Journal of Spices and Aromatic Crops, 10, 51–53.

    Google Scholar 

  • Chaudhary, S., Chikara, S. K., Sharma, M. C., et al. (2015). Elicitation of diosgenin production in Trigonella foenum-graecum (Fenugreek) seedlings by Methyl Jasmonate. International Journal of Molecular Sciences, 16, 29889–29899.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chopra, V. L. (2005). Mutagenesis: Investigating the process and processing the outcome for crop improvement. Current Science, 89, 353–359.

    CAS  Google Scholar 

  • Choudhary, S., Meena, R. S., Singh, R., et al. (2013). Assessment of genetic diversity among Indian Fenugreek (Trigoinella foenum-graecum L.) varieties using morphological and RAPD markers. Legume Research, 36, 289–298.

    Google Scholar 

  • Christen, P. (2002). Trigonella species: In Vitro culture and production of secondary metabolites. In T. Nagata & Y. Ebizuka (Eds.), Medicinal and aromatic plants (Vol. 12) (Biotechnology in Agriculture and Forestry 51, pp. 306–348). Springer: New York.

    Google Scholar 

  • Ciura, J., Szeliga, M., & Tyrka, M. (2015). Optimization of in vitro culture conditions for accumulation of diosgenin by Fenugreek. Journal of Medicinal Plants Studies, 3, 22–25.

    Google Scholar 

  • Ciura, J., Szeliga, M., Grzesik, M., et al. (2017). Next-generation sequencing of representational difference analysis products for identification of genes involved in diosgenin biosynthesis in Fenugreek (Trigonella foenum-graecum). Planta, 245, 977–991.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dangi, R. S., LAgu, M. D., Choudhary, L. B., et al. (2004). Assessment of genetic diversity in Trigonella foenu-graceum and Trigonella caerulea collecting using ISSR and RAPD markers. BMC Plant Biology, 4, 13. https://doi.org/10.1186/1471-2229-4-13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Candolle, A. (1964). Origin of cultivated plants (p. 468). New York: Hafner.

    Google Scholar 

  • Duke, J. A., Reed, C. F., & Weder, J. K. P. (1981). Tamarindus indica: Handbook of legumes of world economic importance. New York: Plenum Press.

    Book  Google Scholar 

  • Elaleem, K. G. A., Ahmed, M. M., & Saeed, B. E. A. E. (2014). Study of the in vitro callus induction Trigonella foenum-graecum L. from cotyledons and hypocotyls explants supplemented with various plant hormones. International Journal of Current Microbiology and Applied Sciences, 3, 486–493.

    Google Scholar 

  • El-Bahr, M. K. (1989). Influence of sucrose and 2, 4-D on Trigonella foenum-graecum tissue culture. African Journal of Agricultural Science, 16, 87–96.

    Google Scholar 

  • El-Nour, M. E. M., Mohammed, L. S., et al. (2013). In vitro callus induction of Fenugreek (Trigonella foenum-graecum L.) using differentt media with different auxins concentrations. The Agriculture and Biology Journal of North America, 4, 243–251.

    Article  CAS  Google Scholar 

  • El-Nour, M. E. M., Ali, A. M. A., & Bader Eldin, A. S. T. (2015). Effect of different concentrations of auxins and combination with kinetın on callus initiation of Trigonella foenum- graecum. International Journal of Technical and Research Applications, 3, 117–122.

    Google Scholar 

  • Fazli, F. R. Y., & Hardman, R. (1968). The spice, Fenugreek (Trigonella foenum-graecum L.): Its conmmercial varieties of seed as a source. Tropical Science, 10, 66–78.

    CAS  Google Scholar 

  • Fehr, W. R. (1993). Principles of cultivar development: Theory and technique (Vol. 1). New York: Macmillan Publishing Company.

    Google Scholar 

  • Fehr, W. R. (1998). Principles of cultivar development: Theory and technique (p. 536). New York: Macmillan Publishing Company.

    Google Scholar 

  • Gadge, P. J., Wakle, V. R., Muktawar, A. A., et al. (2012). Effect of mutagens on morphological characters of Fenugreek (Trigonella foenum-graecum L.). The Association of Japanese Business Studies, 7, 178–181.

    Google Scholar 

  • Haliem, E. A., & Al-Huqail, A. A. (2014). Correlation of genetic variation among wild Trigonella foenum graecum L. accessions with their antioxidant potential status. Genetics and Molecular Research, 13, 10464–10481.

    Article  CAS  PubMed  Google Scholar 

  • Harish, A. K. G., Ram, K., Singh, B., et al. (2011). Molecular and biochemical characterization of different accessions of Fenugreek (Trigonella foenum-graecum L.). Libyan Agriculture Research Center Journal International, 2, 150–154.

    Google Scholar 

  • Hegazy, A., & Ibrahim, T. (2009). Iron bioavailability of wheat biscuits supplemented by Fenugreek seed flour. World Journal of Agricultural Sciences, 5, 769–776.

    Google Scholar 

  • Hora, A., Malik, C. P., & Kumari, B. (2016). Assessment of genetic diversity of Trigonella foenumgraecum L. in northern India using RAPD and ISSR markers. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 179–183.

    CAS  Google Scholar 

  • Hussein, E. A., & Aqlan, E. M. (2011). Effect of mannitol and sodium chloride on some total secondary metabolites of Fenugreek calli cultured ın vitro. Plant Tissue Culture and Biotechnology, 21, 35–43.

    Google Scholar 

  • Isikli, N. D., & Karababa, E. (2005). Rheological characterization of Fenugreek paste (cemen). Journal of Food Engineering, 69, 185–190.

    Article  Google Scholar 

  • Jain, S. C., & Agarwal, M. (1987). Effect of chemical mutagens on steroidal sapogenins in Trigonella species. Phytochemistry, 26, 2203–2205.

    Article  CAS  Google Scholar 

  • Jani, R., Udipi, S. A., & Ghugre, P. S. (2009). Mineral content of complementary foods. Indian Journal of Pediatrics, 76, 37–44.

    Article  PubMed  Google Scholar 

  • Jasim, B., Thomas, R., Mathew, J., et al. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25, 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., Gao, L., Li, P., et al. (2017). Metabonomics study of the therapeutic mechanism of Fenugreek galactomannan on diabetic hyperglycemia in rats, byultra-performance liquid chromatography coupled with quadrupoletime-of-flight mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 15, 1044–1045.

    Google Scholar 

  • Joshi, J. G., & Handler, P. (1960). Biosynthesis of Trigonelline. The Journal of Biological Chemistry, 235, 2981–2983.

    CAS  PubMed  Google Scholar 

  • Kapoor, K., & Srivastav, A. (2010). Meiotic anomalies in sodium azide induced tetraploid and mixoploid of Trigonella foenum-graecum. Cytologia, 75, 409–419.

    Article  Google Scholar 

  • Kavci, E., Taşbaşi, B. B., Aasim, M., et al. (2017). Efficacy of explant age, sucrose and thidiazuron on in vitro shoot regeneration of Fenugreek (Trigonella foenum-graecum L.). In 1st international congress on medicinal and aromatic plants -natural and healthy Life. 10–12 May 2017 Konya, Turkey.

    Google Scholar 

  • Kaviarasan, S., Vijayalakshmi, K., & Anuradha, C. (2004). Polyphenol-rich extract of Fenugreek seeds protect erythrocytes from oxidative damage. Plant Foods for Human Nutrition, 59(4), 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Khanna, P., & Jain, S. C. (1973). Diosgenin, gitogenin and tigogenin from Trigonella foenum-graecum tissue cultures. Lloydia, 36, 96–98.

    CAS  Google Scholar 

  • Khanna, P., Jain, S. C., & Bansal, R. (1975). Effect of cholesterol on growth and production of diosgenin, gitogenin, tigogenin and sterols in suspension cultures. Indian Journal of Experimental Biology, 13, 211–213.

    CAS  Google Scholar 

  • Khawar, K. M., Gulbitti, S. O., Cocu, S., et al. (2004). In vitro crown galls induced by Agrobacterium tumefaciens strain A281 (pTiBo542) in Trigonella foenum-graecum. Biologia Plantarum, 48, 441–444.

    Article  Google Scholar 

  • Ktari, N., Feki, A., Trabeisi, I., et al. (2017). Structure, functional and antioxidant properties in Tunisian beefsausage of a novel polysaccharide from Trigonella foenum-graecum seeds. International Journal of Biological Macromolecules, 98, 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P., & Bhandari, U. (2015). Common medicinal plants with antiobesity potential: A special emphasis on Fenugreek. Ancient Science of Life, 35, 58–63.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kumar, V., Srivastava, N., Singh, A., et al. (2012). Genetic diversity and identification of variety-specific AFLP markers in Fenugreek (Trigonella foenum-graecum). African Journal of Biotechnology, 11, 4323–4329.

    Article  CAS  Google Scholar 

  • Laxmi, V., & Datta, S. K. (1987). Chemical and physical mutagenesis in Fenugreek. Biological Membranes, 13, 64–68.

    CAS  Google Scholar 

  • Laxmi, V., Gupta, M. N., Dixit, B. S., et al. (1980). Effects of chemical and physical mutagens on Fenugreek oil. Indian Drugs, 18, 62–65.

    CAS  Google Scholar 

  • Leela, N. K., & Shafeekh, K. M. (2008). Fenugreek. In V. A. Parthasarathy, B. Chempakam, & T. J. Zachariah (Eds.), Chemistry of spices (pp. 242–259). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Mahmoud, N. Y., Salem, R. H., & Mater, A. A. (2012). Nutritional and biological assessment of wheat biscuits supplemented by Fenugreek plant to improve diet of anemic rats. American Journal of Nursing, 1, 1–9.

    CAS  Google Scholar 

  • Mamatha, N. C., Tehlan, S. K., Srikanth, M., et al. (2017). Molecular characterization of Fenugreek (Trigonella foenum-graecum L.) genotypes using RAPD markers. International Journal of Current Microbiology and Applied Sciences, 6, 2573–2581.

    Article  Google Scholar 

  • McCormick, K. M., Norton, R. M., & Eagles, H. A. (2009). Phenotypic variation within a Fenugreek (Trigonella foenum-graecum L.) germplasm collection. II. Cultivar selection based on traits associated with seed yield. Genetic Resources and Crop Evolution, 56, 651–661.

    Article  Google Scholar 

  • Meghwal, M., & Goswami, T. K. (2012). A review on the functional properties, nutritional content, medicinal utilization and potential application of Fenugreek. Journal of Food Processing and Technology, 3, 181–202.

    Article  Google Scholar 

  • Mehrafarin, A., Qaderi, A., Rezazadeh, S. H., et al. (2010). Bioengineering of important secondary metabolites and metabolic pathways in Fenugreek (Trigonella foenumgraecum L.). Journal of Medicinal Plants, 9, 1–18.

    CAS  Google Scholar 

  • Mehrafarin, A., Rezazadeh, S. H., Naghdi, B. H., et al. (2011). Review on biology, cultivation and biotechnology of Fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant and multipurpose. Journal of Medicinal Plants, 10, 6–24.

    CAS  Google Scholar 

  • Merkli, A., Christen, P., & Kapetanidis, I. (1997). Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Reports, 16, 632–636.

    Article  CAS  PubMed  Google Scholar 

  • Micke, A., & Donini, B. (1993). Induced mutations. In M. D. Hayward, N. O. Bosemark, & I. Romagosa (Eds.), Plant breeding principles and prospects (pp. 52–62). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Miraldi, E., Ferri, S., & Mostaghimi, V. (2001). Botanical drugs and preparations in the traditional medicine of West Azerbaijan (Iran). Journal of Ethnopharmacology, 2, 77–87.

    Article  Google Scholar 

  • Modi, I. R., Ranvid, C. E., Cindura, R., et al. (2016). Assessment of genetic variability in Trigonella cultivars by RAPD analysis. Journal of Biochemistry and Biotechnology, 5, 511–517.

    Google Scholar 

  • Mohamed, W. S., Mostafa, A. M., Mohamed, K. M., et al. (2015). Effects of Fenugreek, Nigella, and termis seeds in nonalcoholic fatty liver in obese diabetic albino rats. Arab Journal of Gastroenterology, 16, 1–9.

    Article  PubMed  Google Scholar 

  • Montgomery, J. E., King, J. R., & Doepel, L. (2006). Fenugreek as forage for dairy cattle. In Proceedings of the 26th Western Canadian Dairy Seminar (WCDS) Advances in Dairy Technology; 4–7 March 2008; Red Deer, Alberta: WCDS; 2006. Vol. 20, Abstract, p. 356.

    Google Scholar 

  • Moradi kor, N., & Moradi, K. (2013). Physiological and pharmaceutical effects of Fenugreek (Trigonella foenum-graecum L.) as a multipurpose and valuable medicinal plant. The Global Journal of Medicinal Plants Research, 1, 199–206.

    Google Scholar 

  • Naidu, M. M., Shyamala, B. N., Naik, J. P., et al. (2011). Chemical composition and antioxidant activity of the husk and endosperm of Fenugreek seeds. LWT – Food Science and Technology, 44, 451–456.

    Article  CAS  Google Scholar 

  • Najma, Z. B., Pardeep, K., Asia, T., et al. (2011). Metabolic and molecular action of Trigonella foenum-graecum (Fenugreek) and trace metals in experimental diabetic tissues. Journal of Biosciences, 36, 383–396.

    Article  CAS  Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy Sciences of the United States of USA, 70, 3321–3323.

    Google Scholar 

  • Olaiya, C. O., & Soetan, K. O. (2014). A review of the health benefits of Fenugreek (Trigonella foenum-graecum L.): Nutritional, biochemical and pharmaceutical perspectives. The American Journal of Social Issues and Humanities, 4, 3–12.

    Google Scholar 

  • Oncina, R., delrio, J. A., Gomez, P., et al. (2000). Effect of ethylene on diosgenin accumulation in callus culture of Trigonella foenumgraecum L. Food Chemistry, 76, 475–479.

    Article  Google Scholar 

  • Panda, S., Biswas, S., & Kar, A. (2013). Trigonelline isolated from Fenugreek seed protects against isoproterenol-induced myocardial injury through down-regulation of Hsp27 and a B-crystallin. Nutrition, 29, 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  • Pant, N. C., Agarwal, R., & Agarwal, S. (2013). Mannitol induced drought stress on calli of var RMt-303. Indian Journal of Experimental Biology, 52, 1128–1137.

    Google Scholar 

  • Petropoulos, G. A. (1973). Agronomic, genetic and chemical studies of Trigonella foenum graecum L. PhD dissertation. England: Bath University.

    Google Scholar 

  • Petropoulos, G. A. (2002). Fenugreek, The genus Trigonella (p. 255). London/New York: Taylor and Francis.

    Book  Google Scholar 

  • Petropoulos, G. A. (2003). Fenugreek: The genus Trigonella. Boca Raton: CRC Press.

    Google Scholar 

  • Piao, C. H., Bui, T. T., Song, C. H., et al. (2017). Trigonella foenum-graecum alleviates airway inflammation of allergic asthma in ovalbumin-induced mouse model. Biochemical and Biophysical Research Communications, 482, 1284–1288.

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran, G., & Ravimycin, T. (2012). Studies on in vitro propagation and biochemical analysis of Trigonella foenum-graecum L. The Association of Japanese Business Studies, 7, 88–91.

    Google Scholar 

  • Prabha, R., Dixit, V., & Chaudhary, B. R. (2010). Sodium azide-induced mutagenesis in Fenugreek (Trigonella foenum graecum Linn). Legume Research, 33, 235–241.

    Google Scholar 

  • Prajapati, D. B., Ravindrababu, Y., & Prajapati, B. H. (2010). Genetic variability and character association in Fenugreek (Trigonella foenum-graecum L.). Journal of Spices and Aromatic Crops, 19, 61–64.

    Google Scholar 

  • Premnath, R., Sudisha, J., Lakshmi Devi, N., & Aradhya, S. M. (2011). Anti-bacterial and anti-oxidant activities of fenugreek (Trigonella foenum-graceum L.) leaves. Research Journal of Medicinal Plants. https://doi.org/10.3923/rjmp.2011.

  • Rababah, T. M., Ereifej, K. I., Esoh, R. B., et al. (2011). Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Natural Product Research, 25(6), 596–605.

    Article  CAS  PubMed  Google Scholar 

  • Radwan, S. S., & Kokate, C. K. (1980). Production of higher levels of Trigonellin by cell cultures of Trigonella foenum-graecum than by the differentiated plant. Planta, 147, 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Raheleh, A., Hasanloo, T., & Khosroshali, M. (2011). Evaluation of trigonelline production in Trigonella foenum-graecum hairy root cultures of two Iranian masses. Pancreas Open Journal, 4, 408–412.

    CAS  Google Scholar 

  • Rajoriya, C. M., Ahmad, R., Rawat, R. S., et al. (2016). Studies on induction of mutation in Fenugreek (Trigonella fonum-graecum). International Journal for Research in Applied Science and Engineering Technology, 4, 333–373.

    Google Scholar 

  • Raju, J., Gupta, D., Rao, A. R., et al. (2001). Trigonella foenum graecum (Fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Molecular and Cellular Biochemistry, 224, 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Raju, J., Patlolla, J. M., Swamy, M. V., et al. (2004). Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiology, Biomarkers & Prevention, 8, 1392–1398.

    Google Scholar 

  • Ramesh, B. K., Yogesh, R. H. L., Kantikar, S. M., et al. (2010). Antidiabetic and histopathological analysis of Fenugreek extract on alloxan induced diabetic rats. International Journal of Drug Development and Research, 2, 356–364.

    Google Scholar 

  • Randhawa, G. J., Singh, M., Gangopadhyay, K. K., et al. (2012). Genetic analysis of Fenugreek (Trigonella foenum-graecum) accessions using morphometric and ISSR markers. Indian Journal of Agricultural Sciences, 82, 393–401.

    CAS  Google Scholar 

  • Rezaeian, S. (2011). Assessment of Diosgenin production by Trigonella foenum-graecum L. in vitro condition. American Journal of Plant Physiology, 6, 261–268.

    Article  CAS  Google Scholar 

  • Roy, R. P., & Singh, A. (1968). Cytomorphological studies of the colchicine-induced tetraploid Trigonella foenum-graecum. Genetics Iberian, 20, 37–54.

    CAS  Google Scholar 

  • Seyedardalan, A., Mahmood, K., & Reza, B. (2013). Direct somatic embryogenesis in Fenugreek (Trigonella foenum-graecum L.). Global Journal of Research on Medicinal Plants & Indigenous Medicine, 2, 624–629.

    Google Scholar 

  • Shahabzadeh, Z., Heidari, B., & Hafez, R. F. (2013). Induction of transgenic hairy roots in Trigonella foenum-graceum co-cultivated with Agrobacterium rhizogenes harboring a GFP gene. Journal of Crop Science and Biotechnology, 16, 263–268.

    Article  Google Scholar 

  • Sharma, R. D. (1986). Effects of seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutrition Research, 6, 1353–1364.

    Article  Google Scholar 

  • Sharma, M. S., & Choudhary, P. R. (2016). Effect of Fenugreek seeds powder (Trigonella foenum-graecum L.) on experimental ınduced hyperlipidemia in rabbits. Journal of Dietary Supplements, 12, 1–8. https://doi.org/10.3109/19390211.2016.1168905.

    Article  CAS  Google Scholar 

  • Shekhawat, N. S., & Galston, A. W. (1983). Mesophyll protoplasts of Fenugreek (Trigonella foenum-graecum L.): Isolation, culture and shoot regeneration. Plant Cell Reports, 2, 119–121.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, S., Meghvansi, M. K., & Hasan, Z. (2007). Cytogenetic changes induced by sodium azide (NaN3) on Trigonella foenum-graecum L. seeds. South African Journal of Botany, 73, 632–635.

    Article  CAS  Google Scholar 

  • Singh, A., & Singh, D. (1976). Karyotype studies in Trigonella. Nucleus (Calcutta), 19, 13–16.

    Google Scholar 

  • Sowmya, P., & Rajyalakshmi, P. (1999). Hypocholesterolemic effect of germinated Fenugreek seeds in human subjects. Plant Food for Human Nutrition, 4, 359–365.

    Article  Google Scholar 

  • Sauvare, Y., Pett, P., Baissao, Y., & Ribes, G. (2000). Chemistry and pharmacology of fenugreek. In G. Mazza & B. D. Oomah (Eds.), Herbs, botanicals and teas (pp. 107–129). Lancaster: Technomic Publishing Company Inc.

    Google Scholar 

  • Sundaram, S., & Purwar, S. (2011). Assessment of genetic diversity among Fenugreek (Trigonella foenum-graecum L.), using RAPD molecular markers. Journal of Medicinal Plants Research, 5, 1543–1548.

    CAS  Google Scholar 

  • Taşbaşi, B. B., Kavci, E., Kirtiş, A., Day, S., Aasim, M., & Khawar, K. M. (2017). Efficacy of sucrose and thidiazuron on in vitro shoot regeneration of Fenugreek (Trigonella foenum-graecum L.). In 1st international congress on medicinal and aromatic plants -natural and healthy Life. 10–12 May 2017 Konya, Turkey.

    Google Scholar 

  • Taylor, W. G., Elder, J. L., Chang, P. R., et al. (2000). Micro determination of diosgenin from Fenugreek (Trigonella foenumgraecum) seeds. Journal of Agricultural and Food Chemistry, 48, 5206–5210.

    Article  CAS  PubMed  Google Scholar 

  • Tayyaba, Z., Hussain, S. N., & Hasan, S. K. (2001). Evaluation of the oral hypoglacemic effects of Trigonella foenum-graecum L (Methi) in normal mice. Journal of Ethnopharmacology, 75, 191–195.

    Article  Google Scholar 

  • Thomas, J. E., Bandara, M., Lee, E. L., et al. (2011). Biochemical monitoring in Fenugreek to develop functional food and medicinal plant variants. New Biotechnology, 28, 110–117.

    Article  CAS  PubMed  Google Scholar 

  • Toker, C., Yadav, S. S., & Solanki, I. S. (2007). Mutation breeding. In S. S. Yadav, D. McNeil, & P. C. Stevenson (Eds.), Lentil: An ancient crop for modern times. Dordrecht: Springer Netherlands.

    Google Scholar 

  • Tomar, R. S., Parakhia, M. V., Rathod, V. M., et al. (2014). A comparative analysis of ISSR and RAPD markers for studying genetic diversity in Trigonella foenum-graecum genotypes. Research Journal of Biotechnology, 9, 89–95.

    CAS  Google Scholar 

  • Trisonthi, P., Baccou, J. C., & Sauvaire, Y. (1980). Trial to improve production of steroidal sapogenin by Fenugreek (Trigonella foenum-graecum L.) tissue grown in vitro. C R Hebd Seances Acad Sci D, 291, 357–360.

    CAS  Google Scholar 

  • Tsiri, D., Chinou, I., Halabalaki, M., et al. (2009). The origin of copper-induced medicarpin accumulation and its secretion from roots of young Fenugreek seedlings are regulated by copper concentration. Plant Science, 176, 367–374.

    Article  CAS  Google Scholar 

  • Vaezi, Z., Daneshvar, M. H., Heidari, M., et al. (2015). Indirect regeneration plant Fenugreek (Trigonella foenumgraecum L), with the use of plant growth regulators in vitro. Bulletin of Environment, Pharmacology and Life Sciences, 4, 103–108.

    CAS  Google Scholar 

  • Vaidya, Y., Ghosh, A., & Kumar, V., et al. (2012). De Novo transcriptome sequencing in Trigonella foenum-graecum L. to identify genes involved in the biosynthesis of diosgenin. TPG. https://doi.org/10.3835/plantgenome2012.08.0021.

  • Xue, W., Lei, J., Li, X., & Zhang, R. (2011). Trigonella foenum-graecum seed extract protects kidney function and morphology in diabetic rats via its antioxidant activity. Nutrition Research, 31(7), 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, S. S., McNeil, D. L., & Stevenson, P. C. (2007). Lentil: An ancient crop for modern times. Dordrecht: Springer Netherlands.

    Book  Google Scholar 

  • Yoshikawa, T., Toyokuni, S., Yamamoto, Y., & Naito, Y. (2000). Free radicals in chemistry biology and medicine. London: OICA Internationa.

    Google Scholar 

  • Zandi, P., Basu, S. K., Cetzal-IX, W., et al. (2017). Fenugreek (Trigonella foenum-graecum L.): An ımportant medicinal and aromatic crop. In P. Zandi, S. K. Basu, W. Cetzal-Ix, & Mojtaba (Eds.), Active ingredients from aromatic and medicinal plants. InTech.

    Google Scholar 

Download references

Acknowledgment

Authors are thankful to Ms. Areeza Emman for her kind efforts for language improvement and help to improve the quality of work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aasim, M., Baloch, F.S., Bakhsh, A., Sameeullah, M., Khawar, K.M. (2018). Biotechnological Approaches for Genetic Improvement of Fenugreek (Trigonella foenum-graceum L.). In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_19

Download citation

Publish with us

Policies and ethics