Skip to main content

Production of the Anticancer Compound Camptothecin in Root and Hairy Root Cultures of Ophiorrhiza mungos L.

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Camptothecin (CPT), a modified monoterpene indole alkaloid, is a well-known antineoplastic agent. A comparison of 25 different transformed root culture lines of Ophiorrhiza mungos (hairy roots transformed by Agrobacterium rhizogenes), which produce CPT, showed a total CPT content of 890–3200 μg/g dry weight. Untransformed root cultures of O. mungos accumulated approx. 2000 μg CPT/g root tissue, or 2500 μg CPT of DW in total, respectively. Both transformed and untransformed root organ cultures of O. mungos showed high yields of CPT and therefore represent an interesting system for the feasible and sustainable bioproduction of CPT as raw material for the pharmaceutical industry. CPT production in other systems will be reviewed and compared. In the present study, comprehensive comparative kinetics of transformed and untransformed root organ cultures of O. mungos in relation to culture conditions, growth parameters, nutrient utilization, and CPT formations were determined. The absolute CPT content showed a positive correlation with growth; thus a constitutive CPT biosynthesis is assumed. CPT was released to the culture medium to a substantial degree. Media CPT content seemed to be actively regulated by the roots themselves, at least in the untransformed line, and exhibited a specific level for each line. The influence of the nitrogen source in relation to growth and CPT biosynthesis was investigated. Ammonium was preferred as a nitrogen source, but nitrate seemed to be beneficial and essential for pH value regulation and consequently for root growth and CPT biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPT:

Camptothecin

DW:

Dry weight

FW:

Fresh weight

rpm:

Revolutions per minute

References

  • Adamovics, J. A., Cina, J. A., & Hutchinson, C. R. (1979). Minor alkaloids of Camptotheca acuminata. Phytochemistry, 18, 1085–1086.

    Article  CAS  Google Scholar 

  • Aimi, N., Tsuyuki, T., Murakami, H., Sakai, S. I., & Haginiwa, J. (1985). Structure of ophiorines A and B; novel type gluco indole alkaloids isolated from Ophiorrhiza ssp. Tetrahedron Letters, 26, 5299–5302.

    Article  CAS  Google Scholar 

  • Aimi, N., Hoshino, H., Nishimura, M., Sakai, S. I., & Haginiwa, J. (1990). Chaboside, first natural glycocamptothecin found from Ophiorrhiza pumila. Tetrahedron Letters, 31, 5169–5172.

    Article  CAS  Google Scholar 

  • Aiyama, R., Nagai, H., Nokata, K., Shinohara, C., & Sawada, S. (1988). A camptothecin derivative from Nothapodytes foetida. Phytochemistry, 27, 3663–3664.

    Article  CAS  Google Scholar 

  • Amna, T., Puri, S. C., Verma, V., Sharma, J. P., Khajuria, R. K., Musarrat, J., Spiteller, M., & Qazi, G. N. (2006a). Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Canadian Journal of Microbiology, 52, 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Amna, T., Khajuria, R. K., Puri, S. C., Verma, V., & Qazi, G. N. (2006b). Determination and qualification of camptothecin in an endophytic fungus by liquid chromatography – Positive mode electrospray ionization tandem mass spectrometry. Current Science, 91, 208–212.

    CAS  Google Scholar 

  • Amna, T., Amina, M., Sharma, P. R., Puri, S. C., Al-Youssef, H. M., Al-Taweet, A. M., & Qazi, G. N. (2012). Effect of precursors feeding and media manipulation on production of novel anticancer pro-drug camptothecin from endophytic fungus. Brazilian Journal of Microbiology, 43, 1476–1489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arbain, D., Lajis, N. H., Putra, D. P., Sargent, M. V., Skelton, B. W., & White, A. H. (1993a). The alkaloids of Ophiorrhiza cf. ferruginea. Australian Journal of Chemistry, 46, 969–976.

    Article  CAS  Google Scholar 

  • Arbain, D., Putra, D. P., & Sargent, M. V. (1993b). The alkaloids of Ophiorrhiza filistipula. Australian Journal of Chemistry, 46, 977–985.

    Article  CAS  Google Scholar 

  • Arisawa, M., Gunasekera, S. P., Cordell, G. A., & Farnsworth, N. R. (1981). Plant anticancer agents XXI. Constituents of Merrilliodendron megacarpum. Planta Medica, 43, 404–415.

    Article  PubMed  CAS  Google Scholar 

  • Asano, T., Watase, I., Sudo, H., Kitajima, M., Takayama, H., Aimi, N., Yamazaki, M., & Saito, K. (2004). Camptothecin production by in vitro cultures of Ophiorrhiza liukiuensis and O. kuroiwai. Plant Biotechnology, 21, 275–281.

    Article  CAS  Google Scholar 

  • Asano, T., Sudo, H., Kitajima, M., Yamazaki, M., & Saito, K. (2009). Chapter 27: Camptothecin production by in vitro cultures and plant regeneration in Ophiorrhiza species. In S. M. Jain & P. K. Saxena (Eds.), Methods in molecular biology: Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants (Vol. 547, pp. 337–345). Totowa: Humana Press.

    Google Scholar 

  • Bastian, P., Bauer, J., Chavarría-Krauser, A., Engwer, C., Jäger, W., Marnach, S., Ptashnyk, M., & Wetterauer, B. (2008). Modelling and simulation of hairy root growth. In H.-J. Krebs & W. Jäger (Eds.), Mathematics – Key technology for the future (pp. 101–115). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Botanical Nomenclature data base of the Botanical Gardens of Missouri. (2017). http://www.tropicos.org. Assessed 11 Oct 2017.

  • Bremekamp, C. E. B. (1966). Remarks on the position, the delimitation, and the subdivision of the Rubiaceae. Acta Botanica Neerlandica, 15, 1–33.

    Article  Google Scholar 

  • Cao, G. R., Gao, J. X., Duan, D. X., Li, S. J., & Wang, K. (1992). Studies on Camptotheca acuminata leaves: Main toxic principle, poisoning, and treatment in goats. In J. F. Lynn (Ed.), Poisonous plants proceedings of the third international symposium (1st ed., pp. 506–508). Ames: Iowa State University Press.

    Google Scholar 

  • Chan, H.-H., Li, C.-Y., Damu, A. G., & Wu, T.-S. (2005). Anthraquinones from Ophiorrhiza hayatana OHWI. Chemical & Pharmaceutical Bulletin, 53, 1232–1235.

    Article  CAS  Google Scholar 

  • Ciddi, V., & Shuler, M. L. (2000). Camptothecin from callus cultures of Nothapodytes foetida. Biotechnology Letters, 22, 129–132.

    Article  CAS  Google Scholar 

  • Cui, L., Ni, X., Ji, Q., Teng, X., Yang, Y., Wu, C., Zekria, D., Zhang, D., & Kai, G. (2015). Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Scientific Reports, 5, 8227. https://doi.org/10.1038/srep08227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai, J. R., Hallock, Y. F., Cardellina, J. H., II, & Boyd, M. R. (1999). 20-O-β-glucopyranosyl camptothecin from Mostuea brunonis: A potential camptothecin pro-drug with improved solubility. Journal of Natural Products, 62, 1427–1429.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, S. P. (1976). The pacific species of Ophiorrhiza Rubiaceae. Lyonia, 1, 47–102.

    Google Scholar 

  • Das, B., & Madhusudhan, P. (1999). Enantioselective synthesis of (S)- and (R)-mappicines and their analogues. Tetrahedron, 55, 7875–7880.

    Article  CAS  Google Scholar 

  • Deepthi, S., & Satheeshkumar, K. (2016). Enhanced camptothecin production induced by elicitors in the cell suspension culture of Ophiorrhiza mungos Linn. Plant Cell, Tissue and Organ Culture, 124, 483–493.

    Article  CAS  Google Scholar 

  • Deepthi, S., & Satheeshkumar, K. (2017a). Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L. Applied Microbiology and Biotechnology, 101, 545–558.

    Article  PubMed  CAS  Google Scholar 

  • Deepthi, S., & Satheeshkumar, K. (2017b). Effects of major nutrients, growth regulators and inoculums size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L. Biochemical Engineering Journal, 117, 198–209.

    Article  CAS  Google Scholar 

  • Ding, X., Liu, K., Deng, B., Chen, W., Li, W., & Liu, F. (2013). Isolation and characterization of endophytic fungi from Camptotheca acuminata. World Journal of Microbiology and Biotechnology, 29, 1831–1838.

    Article  PubMed  CAS  Google Scholar 

  • Flores, H. E., Hoy, M. W., & Pickard, J. J. (1987). Reviews: Secondary metabolites from root cultures. TIBTECH, 5, 64–69.

    Article  CAS  Google Scholar 

  • Fulzele, D. P., & Satdive, R. K. (2003). Somatic embryogenesis, plant regeneration and the evaluation of camptothecin content in Nothapodytes foetida. In Vitro Cellular & Developmental Biology - Plant, 39, 212–216.

    Article  CAS  Google Scholar 

  • Fulzele, D. P., Satdive, R. K., & Pol, B. B. (2001). Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Medica, 67, 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Fulzele, D. P., Satdive, R. K., & Pol, B. B. (2002). Untransformed root cultures of Nothapodytes foetida and production of camptothecin. Plant Cell, Tissue and Organ Culture, 69, 285–288.

    Article  CAS  Google Scholar 

  • Fulzele, D. P., Satdive, R., Kamble, S., Singh, S., & Singh, S. (2015). Improvement of anticancer drug camptothecin production by gamma irradiation on callus cultures of Nothapodytes foetida. International Journal of Pharmaceutical Research and Allied Sciences, 4, 19–27.

    CAS  Google Scholar 

  • Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirement of suspensions cultures of soybean root cells. Experimental Cell Research, 50, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Gharpure, G., Chavan, B., Lele, U., Hastak, A., Bhave, A., Malpure, N., Vasudeva, R., & Patwardhan, A. (2010). Camptothecin accumulation in Ophiorrhiza rugosa var. prostrate from northern Western Ghats. Current Science, 98, 302–304.

    CAS  Google Scholar 

  • Gopalakrishnan, R., & Shankar, B. (2014). Multiple shoot cultures of Ophiorrhiza rugosa var. decumbens Deb and mondal – A viable renewable source for the continuous production of bioactive Camptotheca alkaloids apart from stems of the parent plant of Nothapodytes foetida (Wight) Sleumer. Phytomedicine, 21, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Govindachari, T. R., & Viswanathan, N. (1972a). 9-methoxycamptothecin. A new Alkaloid from Mappia foetida Miers. Contribution from CIBA Research Centre 228:453.

    Google Scholar 

  • Govindachari, T. R., & Viswanathan, N. (1972b). Alkaloids of Mappia foetida. Phytochemistry, 11, 3529–3531.

    Article  CAS  Google Scholar 

  • Gunasekera, S. P., Badawi, M. M., Cordell, G. A., Farnsworth, N. R., & Chitnis, M. (1979). Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. Journal of Natural Products, 42, 475–477.

    Article  PubMed  CAS  Google Scholar 

  • Gurudatt, P. S., Priti, V., Shweta, S., Ramesha, B. T., Ravikanth, G., Vasudeva, R., Amna, T., Deepika, S., Ganeshaiah, K. N., & Shaanker, R. U. (2010). Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Current Science, 98, 1006–1010.

    CAS  Google Scholar 

  • Hamzah, A. S., Arbain, D., Mahyudin, S. M. V., & Lajis, N. H. (1994). The alkaloids of Ophiorrhiza communis and O. tomentosa. Pertanika Journal of Science & Technology, 2, 33–38.

    Google Scholar 

  • Hsu, J. S., Chao T. Y., Lin L. T., et al. (1977). Chemical constituents of the anticancer plant Camptotheca acuminata Decne. II. Chemical constituents of the fruits of Camptotheca acuminata Decne. Huaxue Xuebao, 35, 193–200.

    Google Scholar 

  • Hu, Y., Yu, W., Song, L., Du, X. H., Ma, X., Liu, Y., Wu, J., & Ying, Y. (2016). Effects of light on production of camptothecin and expression of key enzyme genes in seedlings of Camptotheca acuminata Decne. Acta Physiologiae Plantarum. https://doi.org/10.1007/s11738-016-2084-z.

  • Isah, T. (2017). Production of camptothecin in the elicited callus cultures of Nothapodytes nimmoniana (J. Graham) Mabberly. Chemical Papers, 71, 1091–1106.

    Article  CAS  Google Scholar 

  • Isah, T., & Mujib, A. (2015a). In vitro propagation and camptothecin production in Notapodytes nimmoniana. Plant Cell, Tissue and Organ Culture, 121, 1–10.

    Article  CAS  Google Scholar 

  • Isah, T., & Mujib, A. (2015b). Camptothecin from Nothapodytes nimmoniana: Review on biotechnology applications. Acta Physiologiae Plantarum. https://doi.org/10.1007/s11738-015-1854-3.

  • Jain, S. K., Meena, S., Gupta, A. P., Kushwaha, M., Shaanker, R. U., Jaglan, S., Bharate, S. B., & Vishwakarma, R. A. (2014). Dysoxylum binectariferum bark as a new source of anticancer drug camptothecin: Bioactivity-guided isolation and LCMS-based quantification. Bioorganic & Medicinal Chemistry Letters, 24, 3146–3149.

    Article  CAS  Google Scholar 

  • Kai, G., Teng, X., Cui, L., Li, S., Hao, X., Shi, M., & Yan, B. (2014). Effect of three plant hormone elicitors on the Camptothecin accumulation and gene transcript profiling in Camptotheca acuminata seedlings. International Journal of Science, 3, 86–95.

    Google Scholar 

  • Kai, G., Wu, C., Gen, L., Zhang, L., Cui, L., & Ni, X. (2015). Biosynthesis and biotechnological production of anti-cancer drug camptothecin. Phytochemistry Reviews, 14, 525–539.

    Article  CAS  Google Scholar 

  • Kamble, S., Gopalakrishnan, R., & Eapen, S. (2011). Short communication: Production of camptothecin by hairy roots and regenerated transformed shoots of Ophiorrhiza rugosa var. decumbens. Natural Product Research, 25, 1762–1765.

    Article  PubMed  CAS  Google Scholar 

  • Karwasara, V. S., & Dixit, V. K. (2013). Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnology Reports, 7, 357–369.

    Article  Google Scholar 

  • Kavitha P, Vasantha Kumar T, Rajasekharan PE, Abdul VK, Kareem V‚ Rao K (2010) Camptothecin and 9-methoxy camptothecin, anti-cancer alkaloids in Nothapodytes nimmoniana from Western Ghats, India. JMAPS 32:129–132.

    CAS  Google Scholar 

  • Kedari, P., & Malpathak, N. P. (2014). Hairy root cultures of Chonemorpha fragrans (Moon) Alston.: A potential plant for camptothecin production. Indian Journal of Biotechnology, 13, 231–235.

    CAS  Google Scholar 

  • Kitajima, M. (2007). Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza. Journal of Natural Medicines, 61, 14–23.

    Article  CAS  Google Scholar 

  • Kitajima, M., Nakamura, M., Takayama, H., Saito, K., Stöckigt, J., & Aimi, N. (1997). Constituents of regenerated plants of Ophiorrhiza pumila; formation of a new glycocamptothecin and predominant formation of (3R)-deoxypumiloside over (3S)-congener. Tetrahedron Letters, 38, 8997–9000.

    Article  CAS  Google Scholar 

  • Kitajima, M., Fischer, U., Nakamura, M., Ohsawa, M., Ueno, M., Takayama, H., Unger, M., Stöckigt, J., & Aimi, N. (1998a). Anthraquinones from Ophiorrhiza pumila tissue and cell cultures. Phytochemistry, 48, 107–111.

    Article  CAS  Google Scholar 

  • Kitajima, M., Nakamura, M., Watanabe, A., Takayama, H., & Aimi, N. (1998b). Synthesis and absolute configuration of 9-β-D-glucosyloxycamptothecin, a new gluco camptothecin isolated from Ophiorrhiza pumila regenerated plants. Journal of the Chemical Society, Perkin Transactions, 1, 389–390.

    Article  Google Scholar 

  • Kitajima, M., Yoshida, S., Yamagata, K., Nakamura, M., Takayama, H., Saito, K. H., Seki, H., & Norio, A. (2002). Camptothecin-related alkaloids from hairy roots of Ophiorrhiza pumila. Tetrahedron, 58, 9169–9178.

    Article  CAS  Google Scholar 

  • Kitajima, M., Fujii, N., Yoshino, F., Sudo, H., Saito, K., Aimi, N., & Takayama, H. (2005). Camptothecins and two new monoterpene glucosides from Ophiorrhiza liukiuensis. Chemical & Pharmaceutical Bulletin, 53, 1355–1358.

    Article  CAS  Google Scholar 

  • Kulkarni, A. V., Patwandhan, A. A., Lele, U., & Malpathak, N. P. (2010). Production of camptothecin in cultures of Chonemorpha grandiflora. Pharmacognosy Research, 2, 296–299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusari, S., Zühlke, S., & Spiteller, M. (2009). An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. Journal of Natural Products, 72, 2–7.

    Article  PubMed  CAS  Google Scholar 

  • Lalaleo, L., Khojasteh, A., Fattahi, M., Bonfill, M., Cusido, R. M., & Palazon, J. (2016). Plant anti-cancer agent and their biotechnological production in plant cell biofactories. Current Medicinal Chemistry, 23, 4418–4441.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., & Adair, K. T. (1994). XI SHU, a promising anti-tumor and anti-viral tree for the twenty-first century. A Henry M. Rockwell Monograph. The Tucker Center/College of Forestry/Stephen F Austin State University, Nacogdoches/Texas.

    Google Scholar 

  • Li, Z., & Liu, Z. (2005). Camptothecin production in Camptotheca acuminata cultured hydroponically and with nitrogen enrichments. Canadian Journal of Plant Science, 85, 447–452.

    Article  CAS  Google Scholar 

  • Li, S., Yi, Y., Wang, Y., Zhang, Z., & Beasley, R. S. (2002). Camptothecin accumulation and variations in Camptotheca. Planta Medica, 68, 1010–1016.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z. (2000). Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata seedlings. Physiologia Plantarum, 110, 483–488.

    CAS  Google Scholar 

  • Liu, Z., & Adams, J. (1996). Camptothecin yield and distribution within Camptotheca acuminata trees cultivated in Louisiana. Canadian Journal of Botany, 74, 360–365.

    Article  CAS  Google Scholar 

  • Liu, Z., & Adams, J. C. (1998). Seed source variation in camptothecin concentrations of nursery-grown Camptotheca acuminata seedlings. New Forest, 16, 167–175.

    Article  Google Scholar 

  • Liu, W., & Reinscheid, U. M. (2004). Camptothecin-resistant fungal endophytes of Camptotheca acuminata. Mycological Progress, 3, 189–192.

    Article  Google Scholar 

  • Liu, Z., Carpenter, S. B., Bourgeois, W. J., Yu, Y., Constantin, R. J., Falcon, M. J., & Adams, J. C. (1998). Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata. Tree Physiology, 18, 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Adams, J. C., Viator, H. P., Constantin, R. J., & Carpenter, S. B. (1999). Influence of soil fertilization, plant spacing and coppicing on growth, stomatal conductance, abscisic acid and camptothecin levels in Camptotheca acuminata seedlings. Physiologia Plantarum, 105, 402–408.

    Article  CAS  Google Scholar 

  • Liu, K., Ding, X., Deng, B., & Chen, W. (2010). 10-hxdroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnology Letters, 32, 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Song, L., Yu, W., Hu, Y., Ma, X., Wu, J., & Ying, Y. (2015). Light quality modifies camptothecin production and gene expression of biosynthesis in Camptotheca acuminata Decne seedlings. Industrial Crops and Products, 66, 137–143.

    Article  CAS  Google Scholar 

  • López-Meyer, M., & Nessler, C. L. (1997). Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. The Plant Journal, 11, 1167–1175.

    Article  PubMed  Google Scholar 

  • López-Meyer, M., Nessler, C. L., & McKnight, T. D. (1994). Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Medica, 60, 558–560.

    Article  PubMed  Google Scholar 

  • Lorence, A., & Nessler, C. L. (2004). Molecules of interest: Camptothecin, over four decades of surprising findings. Phytochemistry, 65, 2735–2749.

    Article  PubMed  CAS  Google Scholar 

  • Lorence, A., Medina-Bolivar, F., & Nessler, C. L. (2004). Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Reports, 22, 437–441.

    Article  PubMed  CAS  Google Scholar 

  • Manjunatha, B. L., Singh, H. R., Ravikanth, G., Nataraja, K. N., Shankar, R., Kumar, S., & Shaanker, R. U. (2016). Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. Identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule. Journal of Biosciences, 41, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Martin, K. M., Zhang, C.-L., Hembrom, M. E., Slater, A., & Madassery, J. (2008). Adventitious root induction in Ophiorrhiza prostrata: A tool for the production of camptothecin (an anticancer drug) and rapid propagation. Plant Biotechnology Reports, 2, 163–169.

    Article  Google Scholar 

  • Musavi, S. F., Dhavale, A., & Balakrishnan, R. M. (2015). Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Preparative Biochemistry & Biotechnology, 45, 158–172.

    Article  CAS  Google Scholar 

  • Namdeo, A. G., Sharma, A., & Mahadik, K. R. (2008). Plant review: Some observations on Nothapodytes foetida: An overview. Pharmacognosy Research, 2, 110–115.

    CAS  Google Scholar 

  • Neumann, G., & Römheld, V. (2002). Chapter 36: Root-induced changes in the availability of nutrients in the rhizosphere. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots the hidden half (3rd ed., pp. 620–622). New York: Marcel Dekker Inc.

    Google Scholar 

  • Oberlies, N. H., & Kroll, D. J. (2004). Camptothecin and Taxol: Historic achievements in natural products research. Journal of Natural Products, 67, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Padmanabha, B. V., Chandrashekar, M., Ramesha, B. T., Gowda, H. C. H., Gunaga, R. P., Suhas, S., Vasudeva, R., Ganeshaiah, K. N., & Shaanker, R. U. (2006). Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham., in the Western Ghats, India: Implications for identifying high-yielding sources of the alkaloid. Current Science, 90, 95–100.

    CAS  Google Scholar 

  • Pan, X.-W., Xu, H.-H., Gao, X., & Lu, Y.-T. (2004). Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnology Letters, 26, 1745–1748.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y. G., Kim, M. H., Yang, J. K., Chung, Y. G., & Choi, M. S. (2003). Light-susceptibility of camptothecin production from in vitro cultures of Camptotheca acuminata Decne. Biotechnology and Bioprocess Engineering, 8, 32–36.

    Article  CAS  Google Scholar 

  • Pasqua, G., Monacelli, B., & Valletta, A. (2004). Cellular localisation of the anti-cancer drug camptothecin in Camptotheca acuminata Decne (Nyssaceae). European Journal of Histochemistry, 48, 321–327.

    PubMed  Google Scholar 

  • Pi, Y., Jiang, K., Hou, R., Gong, Y., Lin, J., Sun, X., & Tang, K. (2010). Examination of camptothecin and 10-hydroxycamptothecin in Camptotheca acuminiata plant cell culture, and the affected yield under several cell culture treatments. Biocell, 34, 139–143.

    PubMed  Google Scholar 

  • Pu, X., Qu, X., Chen, F., Bao, J., Zhang, G., & Luo, Y. (2013). Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Applied Microbiology and Biotechnology, 97, 9365–9375.

    Article  PubMed  CAS  Google Scholar 

  • Pu, X., Chen, F., Yang, Y., Qu, X., Zhang, G., & Luo, Y. (2015). Isolation and characterization of Paenibacillus polymyxa LY214, a camptothecin-producing endophytic bacterium from Camptotheca acuminata. Journal of Industrial Microbiology & Biotechnology, 42, 1197–1202.

    Article  CAS  Google Scholar 

  • Puri, S. C., Verma, V., Amna, T., Qazi, G. N., & Spiteller, M. (2005). An endophytic fungus from Nothapodytes foetida that produces camptothecin. Journal of Natural Products, 68, 1717–1719.

    Article  PubMed  CAS  Google Scholar 

  • Puri, S. C., Verma, V., Amna, T., Handa, G., Gupta, V., Verma, N., Khajuria, R. K., Saxena, A. K., Qazi, G. N., & Spiteller, M. (2008). Endophytic camptothecin and camptothecinoid producing fungi and process of producing the same. US Patent 7,378,268, 27 May 2008.

    Google Scholar 

  • Rajan, R., Varghese, S. C., Kurup, R., Gopalakrishnan, R., Venkataraman, R., Satheeshkumar, K., & Baby, S. (2013). Search for Camptothecin-yielding Ophiorrhiza species from southern Western Gaths in India: A HPTLC-densitometry study. Industrial Crops and Products, 43, 472–476.

    Article  CAS  Google Scholar 

  • Ramachandra Rao, S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 101–153.

    Article  CAS  Google Scholar 

  • Ramesha, B. T., Amna, T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., Ganeshaiah, K. N., Shaanker, R. U., Khajuria, R. K., Puri, S. C., & Qazi, G. N. (2008). Prospecting for Camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: Identification of high-yielding sources of Camptothecin and new families of Camptothecines. Journal of Chromatographic Science, 46, 362–368.

    Article  PubMed  CAS  Google Scholar 

  • Ramesha, B. T., Suma, H. K., Senthilkumar, U., Priti, V., Ravikanth, G., Vasudeva, R., Kumar, T. R. S., Ganeshaiah, K. N., & Shaanker, R. U. (2013). New plant sources of the anti-cancer alkaloid, camptothecin from the Icacinaceae taxa, India. Phytomedicine, 20, 521–527.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I., Ribnicky, D. M., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno, D. A., Ripoll, C., Yakoby, N., O’Neal, J. M., Cornwell, T., Pastor, I., & Fridlender, B. (2002). Plants and human health in the twenty-first century. Trends in Biotechnology, 20, 522–531.

    Article  PubMed  CAS  Google Scholar 

  • Rehman, S., Shawl, A. S., Kour, A., Andrabi, R., Sudan, P., Sultan, P., Verma, V., & Qazi, G. N. (2008). An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Applied Biochemistry and Microbiology, 44, 203–209.

    Article  CAS  Google Scholar 

  • Rehman, S., Shawl, A. S., Kour, A., Sultan, P., Ahmad, K., Khajuria, R., & Qazi, G. N. (2009). Comparative studies and identification of camptothecin produced by an endophyte at shake flask and bioreactor. Natural Product Research, 23, 1050–1057.

    Article  PubMed  CAS  Google Scholar 

  • Roja, G. (2006). Comparative studies on the camptothecin content from Nothapodytes foetida and Ophiorrhiza species. Natural Product Letters, 20, 85–88.

    Article  CAS  Google Scholar 

  • Roja, G. (2008). Micropropagation and production of Camptothecin from in vitro plants of Ophiorrhiza rugosa var. decumbens. Natural Product Research, 22, 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Roja, G., & Heble, M. R. (1994). The quinoline alkaloids camptothecin and 9-methoxycamptothecin from tissue-cultures and mature trees of Nothapodytes foetida. Phytochemistry, 36, 65–66.

    Article  CAS  Google Scholar 

  • Ruan, J., Zhang, J., Li, M., Zhu, Y., Sun, L., Jin, H., Su, H., & Xu, M. (2014). Dependence of UV-B-induced camptothecin production on nitrate reductase-mediated nitric oxide signaling Camptotheca acuminata suspension cell cultures. Plant Cell, Tissue and Organ Culture, 118, 269–278.

    Article  CAS  Google Scholar 

  • Saito, K., Sudo, H., Yamazaki, M., Koseki-Nakamura, M., Kitajima, M., Takayama, H., & Aimi, N. (2001). Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Reports, 20, 267–271.

    Article  CAS  Google Scholar 

  • Sakato, K., Tanaka, H., Mukai, N., & Misawa, M. (1974). Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agricultural and Biological Chemistry, 38, 217–218.

    Article  CAS  Google Scholar 

  • Sankar-Thomas, Y. D., & Lieberei, R. (2011). Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell, Tissue and Organ Culture, 106, 445–454.

    Article  CAS  Google Scholar 

  • Sankar-Thomas, Y. D., Saare-Surminski, K., & Lieberei, R. (2008). Plant regeneration via somatic embryogenesis of Camptotheca acuminata in temporary immersion system (TIS). Plant Cell, Tissue and Organ Culture, 95, 163–173.

    Article  Google Scholar 

  • Shaanker, R. U., Ramesha, B. T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., & Ganeshaiah, K. N. (2008). Chapter 10: Chemical profiling of Nothapodytes nimmoniana for camptothecin, an important anticancer alkaloid: Towards the development of a sustainable production system. In K. G. Ramawat & J. M. Mérillon (Eds.), Bioactive molecules and medical plants (pp. 197–213). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Shweta, S., Zuehlke, S., Ramesha, B. T., Priti, V., Mohana Kumar, P., Ravikanth, G., Spiteller, M., Vasudeva, R., & Shaanker, R. U. (2010). Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycampthothecin, and 9-metoxycamptothecin. Phytochemistry, 71, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Shweta, S., Gurumurthy, B. R., Ravikanth, G., Shaanker, R. U., & Shivanna, M. B. (2013a). Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecin. Phytomedicine, 20, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Shweta, S., Hima Bindu, J., Raghu, J., Suma, H. K., Manjunatha, B. L., Kumara, P. M., Ravikanth, G., Nataraja, K. N., Ganeshaiah, K. N., & Shaanker, R. U. (2013b). Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecin from Miquelia dentata Bedd. (Icacinaceae). Phytomedicine, 20, 913–917.

    Article  PubMed  CAS  Google Scholar 

  • Sirikantaramas, S., Asano, T., Sudo, H., Yamazaki, M., & Saito, K. (2007a). Camptothecin: Therapeutic potential and biotechnology. Current Pharmaceutical Biotechnology, 8, 196–202.

    Article  PubMed  CAS  Google Scholar 

  • Sirikantaramas, S., Sudo, H., Asano, T., Yamazaki, M., & Saito, K. (2007b). Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry, 68, 2881–2886.

    Article  PubMed  CAS  Google Scholar 

  • Song, S. H., & Byun, S. Y. (1998). Characterization of cell growth and camptothecin production in cell cultures of Camptotheca acuminata. Journal of Microbiology and Biotechnology, 8, 631–638.

    CAS  Google Scholar 

  • Soujanya, K. N., Siva, R., Kumara, P. M., Srimany, A., Ravikanth, G., Mulani, F. A., Aarthy, T., Thulasiram, H. V., Santhoshkumar, T. R., Nataraja, K. N., & Shaanker, R. U. (2017). Camptothecin-producing endophytic bacteria from Pyrenacantha volubilis Hook. (Icacinaceae): A possible role of a plasmid in the production of camptothecin. Phytomedicine, 36, 160–167.

    Article  PubMed  CAS  Google Scholar 

  • Srinivas, K. V. N. S., & Das, B. (2003). 9-methoxy-20-O-acetylcamptothecin, a minor new alkaloid from Nothapodytes foetida. Biochemical Systematics and Ecology, 31, 85–87.

    Article  CAS  Google Scholar 

  • Su, H., Kang, J.-C., Cao, J.-J., Mo, L., & Hyde, K. D. (2014). Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai Journal of Science, 41, 1–13.

    Google Scholar 

  • Sudo, H., Yamakawa, T., Yamazaki, M., Aimi, N., & Saito, K. (2002). Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnology Letters, 24, 359–363.

    Article  CAS  Google Scholar 

  • Suhas, S., Ramesha, B. T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., Ganeshaiah, K. N., & Shaanker, R. U. (2007). Chemical profiling of Nothapodytes nimmoniana populations in the Western Ghats, India for anti-cancer compound, camptothecin. Current Science, 92, 1142–1147.

    CAS  Google Scholar 

  • Tafur, S., Nelson, J. D., DeLong, D. C., & Svoboda, G. H. (1976). Antiviral components of Ophiorrhiza mungos isolation of camptothecin and 10-methoxycamptothecin. Lloydia, 39, 261–262.

    PubMed  CAS  Google Scholar 

  • Tien, H. J., Tien, J. M., Yeh, M. Y., et al. (1977). Studies on the constituents of Camptotheca acuminata Done (I). The constituents of leaves. Hua Hsueh, 1977(2), 51–54.

    Google Scholar 

  • Thengane, S. R., Kulkarni, D. K., Shrikhande, V. A., Joshi, S. P., Sonawane, K. B., & Krishnamurthy, K. V. (2003). Influence of medium composition on callus induction and camptothecin(s) accumulation in Nothapodytes foetida. Plant Cell, Tissue and Organ Culture, 72, 247–251.

    Article  CAS  Google Scholar 

  • van Hengel, A. J., Harkes, M. P., Wichers, H. J., Hesselink, P. G. M., & Buitelaar, R. M. (1992). Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminata. Plant Cell, Tissue and Organ Culture, 28, 11–18.

    Article  Google Scholar 

  • Venugopalan, A., & Srivastava, S. (2015a). Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresource Technology, 188, 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Venugopalan, A., & Srivastava, S. (2015b). Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnology Advances, 33, 873–887.

    Article  PubMed  Google Scholar 

  • Venugopalan, A., Potunuru, U. R., Dixit, M., & Srivastava, S. (2016). Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresource Technology, 206, 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte, R., van der Heijden, R., ten Hoopen, H. J. G., & Memelink, J. (1998). Metabolic engineering for the improvement of plant secondary metabolite production. Plant Tissue Culture and Biotechnology, 4, 3–17.

    Google Scholar 

  • Vincent, R. M., López-Meyer, M., McKnight, T. D., & Nessler, C. L. (1997). Sustained harvest of camptothecin from the leaves of Camptotheca acuminata. Journal of Natural Products, 60, 618–619.

    Article  PubMed  CAS  Google Scholar 

  • Vineesh, V. R., Fijesh, P. V., Louis, C. J., Jaimsha, V. K., & Padikkala, J. (2007). In vitro production of camptothecin (an anticancer drug) through albino plants of Ophiorrhiza rugosa var. decumbens. Current Science, 92, 1216–1218.

    CAS  Google Scholar 

  • Viraporn, V., Yamazaki, M., Saito, K., Denduangboripant, J., Chayamarit, K., Chuanasa, T., & Sukrong, S. (2011). Correlation of camptothecin-producing ability and phylogenetic relationship in the genus Ophiorrhiza. Planta Medica, 77, 759–764.

    Article  PubMed  CAS  Google Scholar 

  • Wall, M. E., Wani, M. C., Natschke, S. M., & Nicholas, A. W. (1986). Plant antitumor agents. 22. Isolation of 11-hydroxycamptothecin from Camptotheca acuminata Decne: Total synthesis and biological activity. Journal of Medicinal Chemistry, 29, 1553–1555.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Tanaka, M., Krstin, S., Peixoto, H. S., de Melo Moura, C. C., & Wink, M. (2016). Cytoskeletal interference – a new mode of action for the anticancer drugs camptothecin and topotecan. European Journal of Pharmacology, 789, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Watase, I., Sudo, H., Yamazaki, M., & Saito, K. (2004). Regeneration of transformed Ophiorrhiza pumila plants producing camptothecin. Plant Biotechnology, 21, 337–342.

    Article  CAS  Google Scholar 

  • Wetterauer, B. (2008). Produktion von Camptothecin in Ophiorrhiza mungos – Pflanzen, Organkulturen und Fermentation. Dissertation, Ruprecht-Karls-Universität Heidelberg.

    Google Scholar 

  • Wiedenfeld, H., Furmanowa, M., Roeder, E., Guzewska, J., & Gustowski, W. (1997). Camptothecin and 10-hydroxycamptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell, Tissue and Organ Culture, 49, 213–218.

    Article  CAS  Google Scholar 

  • Wink, M. (1987). Why do lupin cell cultures fail to produce alkaloids in large quantities? Plant Cell, Tissue and Organ Culture, 8, 103–111.

    Article  CAS  Google Scholar 

  • Wink, M., Alfermann, A. W., Franke, R., Wetterauer, B., Distl, M., Windhoevel, J., Krohn, O., Fuss, E., Garden, H., Mohagheghzadeh, A., Wildi, E., & Ripplinger, P. (2005). Sustainable bioproduction of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Genetic Resources, 3, 90–100.

    Article  CAS  Google Scholar 

  • Winterfeldt, E., Korth, T., Pike, D., & Boch, M. (1972). The biogenetically oriented total synthesis of camptothecin and 7-chlorocamptothecin. Angewandte Chemie, International Edition, 11, 289–290.

    Article  CAS  Google Scholar 

  • Wu, T. S., Leu, Y. L., Hsu, H. C., Ou, L. F., Chen, C. C., Chen, C. F., Ou, J. C., & Wu, Y. C. (1995). Constituents and cytotoxic principles of Nothapodytes foetida. Phytochemistry, 39, 383–385.

    Article  PubMed  CAS  Google Scholar 

  • Wu, S.-F., Hsieh, P.-W., Wu, C.-C., Lee, C.-L., Chen, S.-L., Lu, C.-Y., Wu, T.-S., Chang, F.-R., & Wu, Y.-C. (2008). Camptothecinoids from the seeds of Taiwanese Nothapodytes foetida. Molecules, 13, 1361–1371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki, Y., Sudo, H., Yamazaki, M., Aimi, N., & Saito, K. (2003a). Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: Cloning, characterization and differential expression in tissues and by stress compounds. Plant & Cell Physiology, 44, 395–403.

    Article  CAS  Google Scholar 

  • Yamazaki, Y., Urano, A., Sudo, H., Kitajima, M., Takayama, H., Yamazaki, M., Aimi, N., & Saito, K. (2003b). Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry, 62, 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, Y., Kitajima, M., Arita, M., Takayama, H., Sudo, H., Yamazaki, M., Aimi, N., & Saito, K. (2004). Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C] glucose. Plant Physiology, 134, 161–170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki, M., Mochida, K., Asano, T., Nakabayashi, R., Chiba, M., Udomson, N., Yamazaki, Y., Goodenowe, D. B., Sankawa, U., Yoshida, T., Toyoda, A., Totoki, Y., Sakaki, Y., Góngora-Castillo, E., Buell, C. R., Sakurai, T., & Saito, K. (2013). Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. Plant & Cell Physiology, 54, 686–696.

    Article  CAS  Google Scholar 

  • Yan, X.-F., Wang, Y., Yu, T., Zhang, Y.-H., & Dai, S.-J. (2003). Variations in camptothecin content in Camptotheca acuminata leaves. Botanical bulletin of Academia Sinica, 44, 99–105.

    CAS  Google Scholar 

  • Yan, X.-F., Wang, Y., Zhang, Y.-H., Yu, T., Ma, M.-F., Ju, S.-J., & Chen, S. (2005). Tissue-specific and developmental regulation of camptothecin and 10-hydroxycamptothecin levels in Camptotheca acuminata. Botanical Bulletin of Academia Sinica, 46, 325–331.

    CAS  Google Scholar 

  • Yang, D.-C., & Choi, Y.-E. (2000). Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Reports, 19, 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Ya-ut, P., Chareonsap, P., & Sukrong, S. (2011). Micropropagation and hairy root culture of Ophiorrhiza alata Craib for camptothecin production. Biotechnology Letters, 33, 2519–2526.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Li, S., Zhang, S., Liang, C., Gorenstein, D., & Beasley, R. S. (2004). New camptothecin and ellagic acid analogues from the root bark of Camptotheca acuminata. Planta Medica, 70, 1216–1221.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Shan, T., Mou, Y., & Zhou, L. (2011). Plant-derived bioactive compounds produced by endophytic fungi. Mini-Reviews in Medicinal Chemistry, 11, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, B.-N., Hoch, J. M., Johnson, R. K., Mattern, M. R., Eng, W.-K., Ma, J., Hecht, S. M., Newman, D. J., & Kingston, D. G. I. (2000). Use of COMPARE analysis to discover new natural product drugs: Isolation of camptothecin and 9-methoxycamptothecin from a new source. Journal of Natural Products, 63, 1273–1276.

    Article  PubMed  CAS  Google Scholar 

  • Zu, Y.-G., Tang, Z.-H., Yu, J.-H., & Zhao, C.-J. (2003). Camptothecin and 10-hydroxycamptothecin accumulate differentially under specific developmental control in Camptotheca acuminata. Acta Botanica Sinica, 45, 494–499.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted in cooperation with ROOTec GmbH and supported by a grant from the German Federal Ministry of Education and Research (BMBF, 0312739). We thank Dr. P. Ripplinger (CEO, ROOTec GmbH) for his generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wetterauer, B., Wildi, E., Wink, M. (2018). Production of the Anticancer Compound Camptothecin in Root and Hairy Root Cultures of Ophiorrhiza mungos L.. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_14

Download citation

Publish with us

Policies and ethics