Skip to main content

Transport and Communication Across the Nuclear Envelope

  • Chapter
  • First Online:
Advances in Membrane Proteins
  • 744 Accesses

Abstract

Nuclear envelope (NE), a double-membrane subcellular structure, encloses the genomic DNAs in nucleus and facilitates the effective transport and communication between nucleus and cytoplasm. Nuclear pore complexes form the selective transport channels across the nuclear envelope and coordinate the active gene expression and mRNA export with the cytoplasmic signaling. Nuclear outer and inner membrane proteins such as the LINC complexes and the LEM-domain proteins establish the connections among cytoplasmic skeletons, nuclear lamina, and chromatins; and the extensive networks contribute to the nuclear mechanical support, perinuclear chromatin organization, gene expression regulation, etc. Nuclear envelope undergoes dramatic dynamics during the open mitosis of higher eukaryotes, and the assembly and organization of the NE-associated proteins are tightly controlled through the cell cycle. NE protein malfunctions have been linked to various human diseases that roughly fall into two classes: the nuclear pore complex-related diseases and the nuclear lamina and inner membrane proteins-associated diseases (laminopathies). Over the past decade, structural elucidations of the NE proteins at the atomic or near-atomic resolution have greatly enriched our knowledge of the physiologic and pathologic mechanisms of the nuclear envelope functions. This chapter reviews recent breakthroughs in the structural understanding of NE proteins and their functions in nucleocytoplasmic transport, nuclear envelope organization, the dynamic mitotic NE reestablishment, the NE-associated pathogenesis and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ungricht R, Kutay U. Mechanisms and functions of nuclear envelope remodelling. Nat Rev Mol Cell Biol. 2017;18:229–45.

    Article  PubMed  CAS  Google Scholar 

  2. LaJoie D, Ullman KS. Coordinated events of nuclear assembly. Curr Opin Cell Biol. 2017;46:39–45.

    Article  PubMed  CAS  Google Scholar 

  3. Wandke C, Kutay U. Enclosing chromatin: reassembly of the nucleus after open mitosis. Cell. 2013;152:1222–5.

    Article  PubMed  CAS  Google Scholar 

  4. Trinkle-Mulcahy L, Lamond AI. Toward a high-resolution view of nuclear dynamics. Science. 2007;318:1402–7.

    Article  PubMed  CAS  Google Scholar 

  5. Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol. 2017;18:73–89.

    Article  PubMed  CAS  Google Scholar 

  6. Knockenhauer KE, Schwartz TU. The nuclear pore complex as a flexible and dynamic gate. Cell. 2016;164:1162–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ibarra A, Hetzer MW. Nuclear pore proteins and the control of genome functions. Genes Dev. 2015;29:337–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Meier I. LINCing the eukaryotic tree of life - towards a broad evolutionary comparison of nucleocytoplasmic bridging complexes. J Cell Sci. 2016;129:3523–31.

    Article  PubMed  CAS  Google Scholar 

  9. Hatch E, Hetzer M. Breaching the nuclear envelope in development and disease. J Cell Biol. 2014;205:133–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Champion L, Linder MI, Kutay U. Cellular reorganization during mitotic entry. Trends Cell Biol. 2017;27:26–41.

    Article  PubMed  Google Scholar 

  11. Linder MI, et al. Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins. Dev Cell. 2017;43:141–156 e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Anderson DJ, Hetzer MW. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol. 2007;9:1160–6.

    Article  PubMed  CAS  Google Scholar 

  13. Franz C, et al. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 2007;8:165–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci U S A. 2006;103:17801–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ulbert S, Platani M, Boue S, Mattaj IW. Direct membrane protein-DNA interactions required early in nuclear envelope assembly. J Cell Biol. 2006;173:469–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG. ESCRT-III controls nuclear envelope reformation. Nature. 2015;522:236–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vietri M, et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 2015;522:231–5.

    Article  PubMed  CAS  Google Scholar 

  18. Burke B, Stewart CL. Life at the edge: the nuclear envelope and human disease. Nat Rev Mol Cell Biol. 2002;3:575–85.

    Article  PubMed  CAS  Google Scholar 

  19. Ellis JA, Shackleton S. Nuclear envelope disease and chromatin organization. Biochem Soc Trans. 2011;39:1683–6.

    Article  PubMed  CAS  Google Scholar 

  20. Worman HJ, Ostlund C, Wang Y. Diseases of the nuclear envelope. Cold Spring Harb Perspect Biol. 2010;2:a000760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kohler A, Hurt E. Gene regulation by nucleoporins and links to cancer. Mol Cell. 2010;38:6–15.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang X, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell. 2008;135:1017–27.

    Article  PubMed  CAS  Google Scholar 

  23. Weinberg-Shukron A, et al. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J Clin Invest. 2015;125:4295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Braun DA, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016;48:457–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schwartz TU. The structure inventory of the nuclear pore complex. J Mol Biol. 2016;428:1986–2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Raices M, D’Angelo MA. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol. 2012;13:687–99.

    Article  PubMed  CAS  Google Scholar 

  27. Hayama R, Rout MP, Fernandez-Martinez J. The nuclear pore complex core scaffold and permeability barrier: variations of a common theme. Curr Opin Cell Biol. 2017;46:110–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. von Appen A, Beck M. Structure determination of the nuclear pore complex with three-dimensional Cryo electron microscopy. J Mol Biol. 2016;428:2001–10.

    Article  CAS  Google Scholar 

  29. Strambio-De-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol. 2010;11:490–501.

    Article  PubMed  CAS  Google Scholar 

  30. Hoelz A, Debler EW, Blobel G. The structure of the nuclear pore complex. Annu Rev Biochem. 2011;80:613–43.

    Article  PubMed  CAS  Google Scholar 

  31. Grossman E, Medalia O, Zwerger M. Functional architecture of the nuclear pore complex. Annu Rev Biophys. 2012;41:557–84.

    Article  PubMed  CAS  Google Scholar 

  32. Hoelz A, Glavy JS, Beck M. Toward the atomic structure of the nuclear pore complex: when top down meets bottom up. Nat Struct Mol Biol. 2016;23:624–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gorlich D, Prehn S, Laskey RA, Hartmann E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell. 1994;79:767–78.

    Article  PubMed  CAS  Google Scholar 

  34. Radu A, Blobel G, Moore MS. Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci U S A. 1995;92:1769–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Moore MS, Blobel G. The GTP-binding protein ran/TC4 is required for protein import into the nucleus. Nature. 1993;365:661–3.

    Article  PubMed  CAS  Google Scholar 

  36. Kampmann M, Blobel G. Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat Struct Mol Biol. 2009;16:782–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kelley K, Knockenhauer KE, Kabachinski G, Schwartz TU. Atomic structure of the Y complex of the nuclear pore. Nat Struct Mol Biol. 2015;22:425–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nagy V, et al. Structure of a trimeric nucleoporin complex reveals alternate oligomerization states. Proc Natl Acad Sci U S A. 2009;106:17693–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sampathkumar P, et al. Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex. Proteins. 2011;79:1672–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Szymborska A, et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science. 2013;341:655–8.

    Article  PubMed  CAS  Google Scholar 

  41. Hsia KC, Stavropoulos P, Blobel G, Hoelz A. Architecture of a coat for the nuclear pore membrane. Cell. 2007;131:1313–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stuwe T, et al. Architecture of the nuclear pore complex coat. Science. 2015;347:1148–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. von Appen A, et al. In situ structural analysis of the human nuclear pore complex. Nature. 2015;526:140–3.

    Article  CAS  Google Scholar 

  44. Debler EW, et al. A fence-like coat for the nuclear pore membrane. Mol Cell. 2008;32:815–26.

    Article  PubMed  CAS  Google Scholar 

  45. Fath S, Mancias JD, Bi X, Goldberg J. Structure and organization of coat proteins in the COPII cage. Cell. 2007;129:1325–36.

    Article  PubMed  CAS  Google Scholar 

  46. Copic A, Latham CF, Horlbeck MA, D’Arcangelo JG, Miller EA. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science. 2012;335:1359–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rout MP, Field MC. The evolution of organellar coat complexes and Organization of the Eukaryotic Cell. Annu Rev Biochem. 2017;86:637–57.

    Article  PubMed  CAS  Google Scholar 

  48. Lord C, Ferro-Novick S, Miller EA. The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi. Cold Spring Harb Perspect Biol. 2013;5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Brohawn SG, Schwartz TU. Molecular architecture of the Nup84-Nup145C-Sec13 edge element in the nuclear pore complex lattice. Nat Struct Mol Biol. 2009;16:1173–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brohawn SG, Leksa NC, Spear ED, Rajashankar KR, Schwartz TU. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science. 2008;322:1369–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zanetti G, et al. The structure of the COPII transport-vesicle coat assembled on membranes. elife. 2013;e00951:2.

    Google Scholar 

  52. Bilokapic S, Schwartz TU. Molecular basis for Nup37 and ELY5/ELYS recruitment to the nuclear pore complex. Proc Natl Acad Sci U S A. 2012;109:15241–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu X, Mitchell JM, Wozniak RW, Blobel G, Fan J. Structural evolution of the membrane-coating module of the nuclear pore complex. Proc Natl Acad Sci U S A. 2012;109:16498–503.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Seo HS, et al. Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex. Proc Natl Acad Sci U S A. 2009;106:14281–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Boehmer T, Jeudy S, Berke IC, Schwartz TU. Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol Cell. 2008;30:721–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kosinski J, et al. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science. 2016;352:363–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Stuwe T, et al. Architecture of the fungal nuclear pore inner ring complex. Science. 2015;350:56–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lin DH, et al. Architecture of the symmetric core of the nuclear pore. Science. 2016;352:aaf1015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Schrader N, et al. Structural basis of the nic96 subcomplex organization in the nuclear pore channel. Mol Cell. 2008;29:46–55.

    Article  PubMed  CAS  Google Scholar 

  60. Jeudy S, Schwartz TU. Crystal structure of nucleoporin Nic96 reveals a novel, intricate helical domain architecture. J Biol Chem. 2007;282:34904–12.

    Article  PubMed  CAS  Google Scholar 

  61. Andersen KR, et al. Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors. elife. 2013;e00745:2.

    Google Scholar 

  62. Fischer J, Teimer R, Amlacher S, Kunze R, Hurt E. Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat Struct Mol Biol. 2015;22:774–81.

    Article  PubMed  CAS  Google Scholar 

  63. Antonny B. Mechanisms of membrane curvature sensing. Annu Rev Biochem. 2011;80:101–23.

    Article  PubMed  CAS  Google Scholar 

  64. Drin G, et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol. 2007;14:138–46.

    Article  PubMed  CAS  Google Scholar 

  65. Onischenko E, Stanton LH, Madrid AS, Kieselbach T, Weis K. Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J Cell Biol. 2009;185:475–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Stavru F, et al. NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. J Cell Biol. 2006;173:509–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Eisenhardt N, Redolfi J, Antonin W. Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J Cell Sci. 2014;127:908–21.

    Article  PubMed  CAS  Google Scholar 

  68. Meinke P, Schirmer EC. LINC’ing form and function at the nuclear envelope. FEBS Lett. 2015;589:2514–21.

    Article  PubMed  CAS  Google Scholar 

  69. Luxton GW, Starr DA. KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus. Curr Opin Cell Biol. 2014;28:69–75.

    Article  PubMed  CAS  Google Scholar 

  70. Sosa BA, Kutay U, Schwartz TU. Structural insights into LINC complexes. Curr Opin Struct Biol. 2013;23:285–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Starr DA, Fridolfsson HN. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol. 2010;26:421–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tzur YB, Wilson KL, Gruenbaum Y. SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol. 2006;7:782–8.

    Article  PubMed  CAS  Google Scholar 

  73. Crisp M, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006;172:41–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Starr DA, Han M. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science. 2002;298:406–9.

    Article  PubMed  CAS  Google Scholar 

  75. Malone CJ, Fixsen WD, Horvitz HR, Han M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development. 1999;126:3171–81.

    PubMed  CAS  Google Scholar 

  76. Sosa BA, Rothballer A, Kutay U, Schwartz TU. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell. 2012;149:1035–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Wang W, et al. Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res. 2012;22:1440–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Stuurman N, Heins S, Aebi U. Nuclear lamins: their structure, assembly, and interactions. J Struct Biol. 1998;122:42–66.

    Article  PubMed  CAS  Google Scholar 

  79. Amendola M, van Steensel B. Mechanisms and dynamics of nuclear lamina-genome interactions. Curr Opin Cell Biol. 2014;28:61–8.

    Article  PubMed  CAS  Google Scholar 

  80. Gerace L, Huber MD. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J Struct Biol. 2012;177:24–31.

    Article  PubMed  CAS  Google Scholar 

  81. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. The nuclear lamina comes of age. Nat Rev Mol Cell Biol. 2005;6:21–31.

    Article  PubMed  CAS  Google Scholar 

  82. Naetar N, Ferraioli S, Foisner R. Lamins in the nuclear interior - life outside the lamina. J Cell Sci. 2017;130:2087–96.

    Article  PubMed  CAS  Google Scholar 

  83. Wilson KL, Foisner R. Lamin-binding Proteins. Cold Spring Harb Perspect Biol. 2010;2:a000554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Brachner A, Foisner R. Lamina-associated polypeptide (LAP)2alpha and other LEM proteins in cancer biology. Adv Exp Med Biol. 2014;773:143–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Barton LJ, Soshnev AA, Geyer PK. Networking in the nucleus: a spotlight on LEM-domain proteins. Curr Opin Cell Biol. 2015;34:1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Berk JM, Tifft KE, Wilson KL. The nuclear envelope LEM-domain protein emerin. Nucleus. 2013;4:298–314.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brachner A, Foisner R. Evolvement of LEM proteins as chromatin tethers at the nuclear periphery. Biochem Soc Trans. 2011;39:1735–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wagner N, Krohne G. LEM-domain proteins: new insights into Lamin-interacting proteins. Int Rev Cytol. 2007;261:1–46.

    Article  PubMed  CAS  Google Scholar 

  89. Cai M, et al. Solution NMR structure of the barrier-to-autointegration factor-Emerin complex. J Biol Chem. 2007;282:14525–35.

    Article  PubMed  CAS  Google Scholar 

  90. Bradley CM, Ronning DR, Ghirlando R, Craigie R, Dyda F. Structural basis for DNA bridging by barrier-to-autointegration factor. Nat Struct Mol Biol. 2005;12:935–6.

    Article  PubMed  CAS  Google Scholar 

  91. Caputo S, et al. The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. J Biol Chem. 2006;281:18208–15.

    Article  PubMed  CAS  Google Scholar 

  92. Barrales RR, Forn M, Georgescu PR, Sarkadi Z, Braun S. Control of heterochromatin localization and silencing by the nuclear membrane protein Lem2. Genes Dev. 2016;30:133–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Grund SE, et al. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J Cell Biol. 2008;182:897–910.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mekhail K, Seebacher J, Gygi SP, Moazed D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature. 2008;456:667–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhang J, Tu Z, Watanabe Y, Shibuya H. Distinct TERB1 domains regulate different protein interactions in meiotic telomere movement. Cell Rep. 2017;21:1715–26.

    Article  PubMed  CAS  Google Scholar 

  96. Shibuya H, et al. MAJIN links Telomeric DNA to the nuclear membrane by exchanging telomere cap. Cell. 2015;163:1252–66.

    Article  PubMed  CAS  Google Scholar 

  97. Shibuya H, Ishiguro K, Watanabe Y. The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nat Cell Biol. 2014;16:145–56.

    Article  PubMed  CAS  Google Scholar 

  98. Long J, et al. Telomeric TERB1-TRF1 interaction is crucial for male meiosis. Nat Struct Mol Biol. 2017;24:1073–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Pendlebury DF, et al. Dissecting the telomere-inner nuclear membrane interface formed in meiosis. Nat Struct Mol Biol. 2017;24:1064–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Barrowman J, Michaelis S. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders. Biol Chem. 2009;390:761–73.

    Article  PubMed  CAS  Google Scholar 

  101. Boyartchuk VL, Ashby MN, Rine J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science. 1997;275:1796–800.

    Article  PubMed  CAS  Google Scholar 

  102. Bergo MO, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin a processing defect. Proc Natl Acad Sci U S A. 2002;99:13049–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Quigley A, et al. The structural basis of ZMPSTE24-dependent laminopathies. Science. 2013;339:1604–7.

    Article  PubMed  CAS  Google Scholar 

  104. Holmer L, Pezhman A, Worman HJ. The human Lamin B receptor/sterol reductase multigene family. Genomics. 1998;54:469–76.

    Article  PubMed  CAS  Google Scholar 

  105. Liokatis S, et al. Solution structure and molecular interactions of Lamin B receptor Tudor domain. J Biol Chem. 2012;287:1032–42.

    Article  PubMed  CAS  Google Scholar 

  106. Chen CK, et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science. 2016;354:468–72.

    Article  PubMed  CAS  Google Scholar 

  107. Chen CK, Chow A, Lai M, Guttman M. Response to Comment on “Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing”. Science. 2017;356.

    Google Scholar 

  108. Wang CY, Froberg JE, Blum R, Jeon Y, Lee JT. Comment on “Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing”. Science. 2017;356.

    Google Scholar 

  109. Goodchild RE, Dauer WT. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol. 2005;168:855–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhao C, Brown RS, Chase AR, Eisele MR, Schlieker C. Regulation of Torsin ATPases by LAP1 and LULL1. Proc Natl Acad Sci U S A. 2013;110:E1545–54.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Demircioglu FE, Sosa BA, Ingram J, Ploegh HL, Schwartz TU. Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. Elife. 2016;5.

    Google Scholar 

  112. Sosa BA, et al. How lamina-associated polypeptide 1 (LAP1) activates Torsin. elife. 2014;e03239:3.

    Google Scholar 

  113. Jokhi V, et al. Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope. Cell Rep. 2013;3:988–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Vander Heyden AB, Naismith TV, Snapp EL, Hodzic D, Hanson PI. LULL1 retargets TorsinA to the nuclear envelope revealing an activity that is impaired by the DYT1 dystonia mutation. Mol Biol Cell. 2009;20:2661–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ozelius LJ, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17:40–8.

    Article  PubMed  CAS  Google Scholar 

  116. Guttinger S, Laurell E, Kutay U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol. 2009;10:178–91.

    Article  PubMed  CAS  Google Scholar 

  117. Laurell E, et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell. 2011;144:539–50.

    Article  PubMed  CAS  Google Scholar 

  118. Martino L, et al. Channel nucleoporins recruit PLK-1 to nuclear pore complexes to direct nuclear envelope breakdown in C. elegans. Dev Cell. 2017;43:157–171 e7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Heald R, McKeon F. Mutations of phosphorylation sites in Lamin a that prevent nuclear lamina disassembly in mitosis. Cell. 1990;61:579–89.

    Article  PubMed  CAS  Google Scholar 

  120. Peter M, Nakagawa J, Doree M, Labbe JC, Nigg EA. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell. 1990;61:591–602.

    Article  PubMed  CAS  Google Scholar 

  121. Molitor TP, Traktman P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol Biol Cell. 2014;25:891–903.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tseng LC, Chen RH. Temporal control of nuclear envelope assembly by phosphorylation of Lamin B receptor. Mol Biol Cell. 2011;22:3306–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Asencio C, et al. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell. 2012;150:122–35.

    Article  PubMed  CAS  Google Scholar 

  124. Walther TC, et al. RanGTP mediates nuclear pore complex assembly. Nature. 2003;424:689–94.

    Article  PubMed  CAS  Google Scholar 

  125. Rasala BA, Ramos C, Harel A, Forbes DJ. Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol Biol Cell. 2008;19:3982–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Doucet CM, Talamas JA, Hetzer MW. Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell. 2010;141:1030–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Harel A, et al. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell. 2003;14:4387–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Olmos Y, Carlton JG. The ESCRT machinery: new roles at new holes. Curr Opin Cell Biol. 2016;38:1–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science. 2012;336:220–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease. Int Rev Cell Mol Biol. 2015;320:171–233.

    Article  PubMed  Google Scholar 

  131. Sakuma S, D’Angelo MA. The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol. 2017;68:72–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Kim HJ, Taylor JP. Lost in transportation: nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron. 2017;96:285–97.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Gasset-Rosa F, et al. Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron. 2017;94:48–57 e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Grima JC, et al. Mutant huntingtin disrupts the nuclear pore complex. Neuron. 2017;94:93–107 e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Zhang K, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525:56–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lee KH, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 2016;167:774–788 e17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Capelson M, Hetzer MW. The role of nuclear pores in gene regulation, development and disease. EMBO Rep. 2009;10:697–705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Capelson M, et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell. 2010;140:372–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Chow KH, Factor RE, Ullman KS. The nuclear envelope environment and its cancer connections. Nat Rev Cancer. 2012;12:196–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Struski S, et al. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia. 2017;31:565–72.

    Article  PubMed  CAS  Google Scholar 

  141. de Rooij JD, et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet. 2017;49:451–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Franks TM et al. Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes Dev. 2017.

    Google Scholar 

  143. Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol. 2007;9:804–12.

    Article  PubMed  CAS  Google Scholar 

  144. Bonne G, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21:285–8.

    Article  PubMed  CAS  Google Scholar 

  145. Worman HJ, Dauer WT. The nuclear envelope: an intriguing focal point for neurogenetic disease. Neurotherapeutics. 2014;11:764–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Bione S, et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet. 1994;8:323–7.

    Article  PubMed  CAS  Google Scholar 

  147. Hellemans J, et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet. 2004;36:1213–8.

    Article  PubMed  CAS  Google Scholar 

  148. Gros-Louis F, et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet. 2007;39:80–5.

    Article  PubMed  CAS  Google Scholar 

  149. Hoffmann K, et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet. 2002;31:410–4.

    Article  PubMed  CAS  Google Scholar 

  150. Kamm C, et al. Susceptibility to DYT1 dystonia in European patients is modified by the D216H polymorphism. Neurology. 2008;70:2261–2.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge fundings from the National Key R&D Program of China (Grant No. 2016YFA0501803 and 2017YFA0504504 to J.H.), National Natural Science Foundation of China (Grant No. 31570766 and U1632130 to J.H.), Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support (Grant No. 2017YZ004 to J.H.) and Chinese Academy of Sciences Facility-based Open Research Program. J.H. is a recipient of the Thousand Young Talents Program of the Chinese government and a recipient of the Hundred Talents Program of Shanghai Jiao Tong University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, J. (2018). Transport and Communication Across the Nuclear Envelope. In: Cao, Y. (eds) Advances in Membrane Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-13-0532-0_5

Download citation

Publish with us

Policies and ethics