Skip to main content

Drosophila as a Model Organism

  • Chapter
  • First Online:
Drosophila Models for Human Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1076))

Abstract

Drosophila melanogaster has been widely used in classical and modern genetics for more than 100 years. The history of the Drosophila model in the study of various aspects of life sciences will be summarized in this chapter. Furthermore, commonly used techniques and tools with Drosophila models will be briefly described, with a special emphasis on the advantages of Drosophila models in the study of various human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–95.

    Article  PubMed  Google Scholar 

  • Aguila JR, Suszko J, Gibbs AG, Hoshizaki DK. The role of larval fat cells in adult Drosophila melanogaster. J Exp Biol. 2007;210:956–63.

    Article  PubMed  Google Scholar 

  • Andretic R, Kim YC, Jones FS, Han KA, Greenspan RJ. Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc Natl Acad Sci U S A. 2008;105:20392–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Bergman CM. Drosophila melanogaster: a case study of a model genomic sequence and its consequence. Genome Res. 2017;15:1661–7.

    Article  CAS  Google Scholar 

  • Baehrecke EH. Ecdysone signaling cascade and regulation of Drosophila metamorphosis. Arch Insect Biochem Physiol. 1996;33:231–44.

    Article  CAS  PubMed  Google Scholar 

  • Bellen HJ, Yamamoto S. Morgan’s legacy: fruit flies and the functional annotation of conserved genes. Cell. 2015;163:12–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beumer KJ, Carroll D. Targeted genome engineering techniques in Drosophila. Methods. 2014;68:29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi-Frias D, Orian A, Delrow JJ, Vazquez J, Rosales-Nieves AE, Parkhurst SM. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol. 2004;2:E178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Birch-Machin I, Gao S, Huen D, McGirr R, White RA, Russell S. Genomic analysis of heat-shock factor targets in Drosophila. Genome Biol. 2005;6:R63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boley N, Stoiber MH, Booth BW, Wan KH, Hoskins RA, et al. Genome-guided transcript assembly by integrative analysis of RNA sequence data. Nat Biotechnol. 2014;32:341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118:401–15.

    PubMed  CAS  Google Scholar 

  • Bridges CB. Salivary chromosome maps with a key to the banding of the chromosomes of Drosophila melanogaster. J Hered. 1935;26:60–4.

    Article  Google Scholar 

  • Brown JB, Boley N, Eisman R, May GE, Stoiber MH, et al. Diversity and dynamics of the Drosophila transcriptome. Nature. 2014;512:393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castle WE. Inbreeding, cross-breeding and sterility in Drosophila. Science. 1906;23:153.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZX, Sturgill D, Qu J, Jiang H, Park S, et al. Comparative validation of the D. melanogaster modENCODE transcriptome annotation. Genome Res. 2014;24:1209–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RK, Christensen SJ, Deal JA, Coburn RA, Deal ME, Gresens JM, Kaufman TC, Cook KR. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome. Genome Biol. 2012;13:R21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Q, Zeng Q, Qian Y, Li C, Yang Y. Research on the karyotype and evolution of Drosophila melanogaster species group. J Genet Genomics. 2007;34:196–213.

    Article  PubMed  Google Scholar 

  • Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007;448:151–6.

    Article  CAS  PubMed  Google Scholar 

  • Dimitri P. Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica. 1997;100:85–93.

    Article  CAS  PubMed  Google Scholar 

  • Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature. 2000;404:394–8.

    Article  CAS  PubMed  Google Scholar 

  • Glinka S, Ometto L, Mousset S, Stephan W, De Lorenzo D. Demography and natural selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach. Genetics. 2003;165:1269–78.

    PubMed  PubMed Central  Google Scholar 

  • Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471:473–9.

    Article  CAS  PubMed  Google Scholar 

  • Hammond MP, Laird CD. Control of DNA replication and spatial distribution of defined DNA sequences in salivary gland cells of Drosophila melanogaster. Chromosoma. 1985;91:279–86.

    Article  CAS  PubMed  Google Scholar 

  • He B, Caudy A, Parsons L, Rosebrock A, Pane A, et al. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster. Genome Res. 2012;22:2507–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ida H, Suzusho N, Suyari O, Yoshida H, Ohno K, Hirose F, Itoh M, Yamaguchi M. Genetic screening for modifiers of the DREF pathway in Drosophila melanogaster: identification and characterization of HP6 as a novel target of DREF. Nucleic Acids Res. 2009;37:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Kato Y, Nishida M, Hayakawa T, Haraguchi T, Hiraoka Y, Inoue YH, Yamaguchi M. Functional domain analysis of human HP1 isoforms in Drosophila. Cell Struct Funct. 2007;32:57–67.

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kato M, Tachibana M, Shinkai Y, Yamaguchi M. Characterization of Drosophila G9a in vivo and identification of genetic interactants. Genes Cells. 2008;13:703–22.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman TC. A short history and description of Drosophila melanogaster classical genetics: chromosome aberrations, forward genetic screens, and the nature of mutations. Genetics. 2017;206:665–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacAlpine DM, Rodriguez HK, Bell SP. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 2004;18:3094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire SE, Roman G, Davis RL. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 2004;20:384–91.

    Article  CAS  PubMed  Google Scholar 

  • Merkey AB, Wong CK, Hoshizaki DK, Gibbs AG. Energetics of metamorphosis in Drosophila melanogaster. J Insect Physiol. 2011;57:1437–45.

    Article  CAS  PubMed  Google Scholar 

  • Metz CW. Chromosome studies in the Diptera. J Exp Zool. 1914;17:45–59.

    Article  Google Scholar 

  • modENCODE Consortium RS, Ernst J, Kharchenko PV, Kheradpour P, et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 2010;330:1787–97.

    Google Scholar 

  • Mohr SE. RNAi screening in Drosophila cells and in vivo. Methods. 2014;68:82–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. A whole-genome assembly of Drosophila. Science. 2000;287:2196–204.

    Article  CAS  PubMed  Google Scholar 

  • Nichols CD. Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. Pharmacol Ther. 2006;112:677–700.

    Article  CAS  PubMed  Google Scholar 

  • Pandy UB, Nichols CD. Human disease models in Drosophila melanogaster and its role of the fly in therapeutic drug discovery. Pharmac Rev. 2011;63:411–36.

    Article  CAS  Google Scholar 

  • Rodman TC. DNA replication in salivary gland nuclei of Drosophila melanogaster at successive larval and prepupal stages. Genetics. 1967;55:375–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Roman G, Endo K, Zong L, Davis RL. P[switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2001;98:12602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothenfluh A, Heberlein U. Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion. Curr Opin Neurobiol. 2002;12:639–45.

    Article  CAS  PubMed  Google Scholar 

  • Satta R, Dimitrijevic N, Manev H. Drosophila metabolize 1,4-butanediol into gamma-hydroxybutyric acid in vivo. Eur J Pharmacol. 2003;473:149–52.

    Google Scholar 

  • Sturtevant AH. Thomas Hunt Morgan. Biogr Mem Natl Acad Sci. 1959;33:283–325.

    Google Scholar 

  • Sun LV, Chen L, Greil F, Negre N, Li TR, Cavalli G, Zhao H, Van Steensel B, White KP. Protein–DNA interaction mapping using genomic tiling path microarrays in Drosophila. Proc Natl Acad Sci. 2003;100:9428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases. Dis Models Mech. 2016;9:235–44.

    Article  CAS  Google Scholar 

  • Venken KJ, Bellen HJ. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods. 2014;68:15–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wangler MF, Yamamoto S, Bellen HJ. Fruit flies in biomedical research. Genetics. 2015;199:639–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf FW, Heberlein U. Invertebrate models of drug abuse. J Neurobiol. 2003;54:161–78.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Date T, Matsukage A. Distribution of PCNA in Drosophila embryo during nuclear division cycles. J Cell Sci. 1991;100:729–33.

    PubMed  Google Scholar 

  • Yamaguchi M, Hirose F, Inoue YH, Shiraki M, Hayashi Y, Nishi Y, Matsukage A. Ectopic expression of human p53 inhibits entry into S-phase and induces apoptosis in the Drosophila eye imaginal disc. Oncogene. 1999;18:6767–75.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Jaiswal M, Charng W-L, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, et al. A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell. 2014;159:200–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamitsu Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamaguchi, M., Yoshida, H. (2018). Drosophila as a Model Organism. In: Yamaguchi, M. (eds) Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, vol 1076. Springer, Singapore. https://doi.org/10.1007/978-981-13-0529-0_1

Download citation

Publish with us

Policies and ethics