Skip to main content

Distributed Coordinated Control for Energy Internet

  • Chapter
  • First Online:
Energy Internet and We-Energy

Part of the book series: Renewable Energy Sources & Energy Storage ((RESES))

  • 637 Accesses

Abstract

With the consideration of the large-scale amount and the characteristics of the distributed renewable energy generation, how to achieve the proportional power-sharing among DGs is an important issue to guarantee the stability and safety of the Energy Internet. In this section, a multi-agent system-based distributed coordinated control scheme is studied, and the main content contains: (1) architecture of multiagent system-based distributed coordinated control for energy internet; (2) implementation of distributed coordinated control for energy internet; (3) analysis of circulating current and design of the primary energy agent based on nonlinear model of distributed generator; (4) design of distributed coordinated control strategy based on multi-agent consensus algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.C. Chandorkar, D.M. Divan, R. Adapa, Control of parallel connected inverters in standalone ac supply systems. IEEE Trans. Ind. Appl. 29(1), 136–143 (1993)

    Article  Google Scholar 

  2. Q. Sun, J. Zhou, J.M. Guerrero, H. Zhang, Hybrid three-phase/single-phase microgrid architecture with power management capabilities. IEEE Trans. Power Electron. 30(10), 5964–5977 (2015)

    Article  Google Scholar 

  3. Q. Sun, R. Han, H. Zhang, J. Zhou, J.M. Guerrero, A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Trans. Smart Grid 6(6), 3006–3019 (2015)

    Article  Google Scholar 

  4. D. Zhang, F. Wang, R. Burgos, R. Lai, D. Boroyevich, DC-link ripple current reduction for paralleled three-phase voltage-source converters with interleaving. IEEE Trans. Power Electron. 26(6), 1741–1753 (2011)

    Article  Google Scholar 

  5. J.M. Guerrero, J.C. Vasquez, J. Matas, J.G. de Vicuna, M. Castilla, Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)

    Article  Google Scholar 

  6. Y.W. Li, C.-N. Kao, An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. IEEE Trans. Power Electron. 24(12), 2977–2988 (2009)

    Article  Google Scholar 

  7. A. Bidram, A. Davoudi, F.L. Lewis, S.S. Ge, Distributed adaptive voltage control of inverter-based microgrids. IEEE Trans. Energy Convers. 29(4), 862–872 (2014)

    Article  Google Scholar 

  8. J.M. Guerrero, L. Hang, J. Uceda, Control of distributed uninterruptible power supply systems. IEEE Trans Ind. Electron. 55(8), 2845–2859 (2008)

    Article  Google Scholar 

  9. X. Lu, J.M. Guerrero, K. Sun, J.C. Vasquez, R. Teodorescu, L. Huang, Hierarchical control of parallel ac-dc converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid 5(2), 683–692 (2014)

    Article  Google Scholar 

  10. M. Savaghebi, A. Jalilian, J.C. Vasquez, J.M. Guerrero, Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid. IEEE Trans. Smart Grid 3(2), 797–807 (2014)

    Article  Google Scholar 

  11. H. Zhang, T. Feng, G. Yang, H. Liang, Distributed cooperative optimal control for multiagent systems on directed graphs: an inverse optimal approach. IEEE Trans. Cybern. 45(7), 1315–1326 (2014)

    Article  Google Scholar 

  12. H. Zhang, J. Zhang, G. Yang, Y. Luo, Leader-based optimal coordination control for the consensus problem of multi-agent differential games via fuzzy adaptive dynamic programming. IEEE Trans. Fuzzy Syst. 23(1), 152–163 (2015)

    Article  Google Scholar 

  13. A.L. Dimeas, N.D. Hatziargyriou, Operation of a multiagent system for microgrid control. IEEE Trans. Power Syst. 20(3), 1447–1455 (2005)

    Article  Google Scholar 

  14. P. Papadopoulos, N. Jenkins, L.M. Cipcigan, I. Grau, E. Zabala, Coordination of the charging of electric vehicles using a multi-agent system. IEEE Trans. Smart Grid 4(4), 1802–1809 (2013)

    Article  Google Scholar 

  15. E.L. Karfopoulos, N.D. Hatziargyriou, A multi-agent system for controlled charging of a large population of electric vehicles. IEEE Trans. Power Syst. 28(2), 1196–1204 (2013)

    Article  Google Scholar 

  16. A. Bidram, A. Davoudi, F.L. Lwis, J.M. Guerrero, Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst. 28(3), 3462–3470 (2013)

    Article  Google Scholar 

  17. W. Liu, W. Gu, W. Sheng, X. Meng, Z. Wu, W. Chen, Decentralized multi-agent system-based cooperative frequency control for autonomous microgrid with communication constraints. IEEE Trans. Sustain. Energy 5(2), 446–456 (2014)

    Article  Google Scholar 

  18. W. Yao, M. Chen, J. Matas, J.M. Guerrero, Z.M. Qian, Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans. Ind. Electron. 58(2), 576–588 (2011)

    Article  Google Scholar 

  19. J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Upper Saddle River, 2009)

    MATH  Google Scholar 

  20. H. Zhang, D. Liu, Y. Luo, D. Wang, Adaptive Dynamic Programming for Control-Algorithms and Stability (Springer, London, 2013)

    Book  Google Scholar 

  21. M.Q. Wang, H.B. Gooi, Spinning reserve estimation in microgrids. IEEE Trans. Power Syst. 26(3), 1164–1174 (2011)

    Article  Google Scholar 

  22. Y. Rebours, D.S. Kirschen, What is Spinning Reserve? (2005), http://eee.dev.ntweb.mcc.ac.uk/research/groups/eeps/publications/reportstheses/aoe/reboursetal_techrep_2005A.pdf

  23. L. Rao, X. Liu, M.D. Ilic, J. Liu, Distributed coordination of internet data centers under multiregional electricity markets. Proc. IEEE 100(1), 269–282 (2012)

    Article  Google Scholar 

  24. T.L. Vandoorn, J.C. Vasquez, J.D. Kooning, J.M. Guerrero, L. Vandevelde, Microgrids: hierarchical control and overview of the control and reserve management strategies. IEEE Ind. Electron. Mag. 7(4), 42–55 (2013)

    Article  Google Scholar 

  25. C. Yuen, A. Oudalov, A. Timbus, The provision of frequency control reserves from multiple microgrids. IEEE Trans. Ind. Electron. 58(1), 173–183 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuye Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Q. (2019). Distributed Coordinated Control for Energy Internet. In: Energy Internet and We-Energy. Renewable Energy Sources & Energy Storage. Springer, Singapore. https://doi.org/10.1007/978-981-13-0523-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0523-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0522-1

  • Online ISBN: 978-981-13-0523-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics