Advertisement

Distributed Coordinated Control for Energy Internet

  • Qiuye SunEmail author
Chapter
Part of the Renewable Energy Sources & Energy Storage book series (RESES)

Abstract

With the consideration of the large-scale amount and the characteristics of the distributed renewable energy generation, how to achieve the proportional power-sharing among DGs is an important issue to guarantee the stability and safety of the Energy Internet. In this section, a multi-agent system-based distributed coordinated control scheme is studied, and the main content contains: (1) architecture of multiagent system-based distributed coordinated control for energy internet; (2) implementation of distributed coordinated control for energy internet; (3) analysis of circulating current and design of the primary energy agent based on nonlinear model of distributed generator; (4) design of distributed coordinated control strategy based on multi-agent consensus algorithm.

References

  1. 1.
    M.C. Chandorkar, D.M. Divan, R. Adapa, Control of parallel connected inverters in standalone ac supply systems. IEEE Trans. Ind. Appl. 29(1), 136–143 (1993)CrossRefGoogle Scholar
  2. 2.
    Q. Sun, J. Zhou, J.M. Guerrero, H. Zhang, Hybrid three-phase/single-phase microgrid architecture with power management capabilities. IEEE Trans. Power Electron. 30(10), 5964–5977 (2015)CrossRefGoogle Scholar
  3. 3.
    Q. Sun, R. Han, H. Zhang, J. Zhou, J.M. Guerrero, A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Trans. Smart Grid 6(6), 3006–3019 (2015)CrossRefGoogle Scholar
  4. 4.
    D. Zhang, F. Wang, R. Burgos, R. Lai, D. Boroyevich, DC-link ripple current reduction for paralleled three-phase voltage-source converters with interleaving. IEEE Trans. Power Electron. 26(6), 1741–1753 (2011)CrossRefGoogle Scholar
  5. 5.
    J.M. Guerrero, J.C. Vasquez, J. Matas, J.G. de Vicuna, M. Castilla, Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)CrossRefGoogle Scholar
  6. 6.
    Y.W. Li, C.-N. Kao, An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. IEEE Trans. Power Electron. 24(12), 2977–2988 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Bidram, A. Davoudi, F.L. Lewis, S.S. Ge, Distributed adaptive voltage control of inverter-based microgrids. IEEE Trans. Energy Convers. 29(4), 862–872 (2014)CrossRefGoogle Scholar
  8. 8.
    J.M. Guerrero, L. Hang, J. Uceda, Control of distributed uninterruptible power supply systems. IEEE Trans Ind. Electron. 55(8), 2845–2859 (2008)CrossRefGoogle Scholar
  9. 9.
    X. Lu, J.M. Guerrero, K. Sun, J.C. Vasquez, R. Teodorescu, L. Huang, Hierarchical control of parallel ac-dc converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid 5(2), 683–692 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Savaghebi, A. Jalilian, J.C. Vasquez, J.M. Guerrero, Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid. IEEE Trans. Smart Grid 3(2), 797–807 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Zhang, T. Feng, G. Yang, H. Liang, Distributed cooperative optimal control for multiagent systems on directed graphs: an inverse optimal approach. IEEE Trans. Cybern. 45(7), 1315–1326 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Zhang, J. Zhang, G. Yang, Y. Luo, Leader-based optimal coordination control for the consensus problem of multi-agent differential games via fuzzy adaptive dynamic programming. IEEE Trans. Fuzzy Syst. 23(1), 152–163 (2015)CrossRefGoogle Scholar
  13. 13.
    A.L. Dimeas, N.D. Hatziargyriou, Operation of a multiagent system for microgrid control. IEEE Trans. Power Syst. 20(3), 1447–1455 (2005)CrossRefGoogle Scholar
  14. 14.
    P. Papadopoulos, N. Jenkins, L.M. Cipcigan, I. Grau, E. Zabala, Coordination of the charging of electric vehicles using a multi-agent system. IEEE Trans. Smart Grid 4(4), 1802–1809 (2013)CrossRefGoogle Scholar
  15. 15.
    E.L. Karfopoulos, N.D. Hatziargyriou, A multi-agent system for controlled charging of a large population of electric vehicles. IEEE Trans. Power Syst. 28(2), 1196–1204 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Bidram, A. Davoudi, F.L. Lwis, J.M. Guerrero, Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst. 28(3), 3462–3470 (2013)CrossRefGoogle Scholar
  17. 17.
    W. Liu, W. Gu, W. Sheng, X. Meng, Z. Wu, W. Chen, Decentralized multi-agent system-based cooperative frequency control for autonomous microgrid with communication constraints. IEEE Trans. Sustain. Energy 5(2), 446–456 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Yao, M. Chen, J. Matas, J.M. Guerrero, Z.M. Qian, Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans. Ind. Electron. 58(2), 576–588 (2011)CrossRefGoogle Scholar
  19. 19.
    J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Upper Saddle River, 2009)zbMATHGoogle Scholar
  20. 20.
    H. Zhang, D. Liu, Y. Luo, D. Wang, Adaptive Dynamic Programming for Control-Algorithms and Stability (Springer, London, 2013)CrossRefGoogle Scholar
  21. 21.
    M.Q. Wang, H.B. Gooi, Spinning reserve estimation in microgrids. IEEE Trans. Power Syst. 26(3), 1164–1174 (2011)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    L. Rao, X. Liu, M.D. Ilic, J. Liu, Distributed coordination of internet data centers under multiregional electricity markets. Proc. IEEE 100(1), 269–282 (2012)CrossRefGoogle Scholar
  24. 24.
    T.L. Vandoorn, J.C. Vasquez, J.D. Kooning, J.M. Guerrero, L. Vandevelde, Microgrids: hierarchical control and overview of the control and reserve management strategies. IEEE Ind. Electron. Mag. 7(4), 42–55 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Yuen, A. Oudalov, A. Timbus, The provision of frequency control reserves from multiple microgrids. IEEE Trans. Ind. Electron. 58(1), 173–183 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations