Skip to main content

We-Energy Modelling

  • Chapter
  • First Online:
  • 634 Accesses

Part of the book series: Renewable Energy Sources & Energy Storage ((RESES))

Abstract

In this chapter, a mechanism model of We-Energy based on its structure is proposed, which embodies the distinguishing features of bi-directional power transformation and energy coupling. A quaternary model of WE is established under steady and transient state, which can be divided into normal state, alert state, emergency state and recovery state. And the interaction process of quaternary model is described as Cyber-Physics-Economy-Energy. Simulation results validate that the proposed model is of high identification accuracy and has better generalization performance, and can effectively fit the state variation of each node of the whole system under different operation modes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Krause, G. Andersson, K. Frohlich et al., Multiple-energy carriers: modeling of production, delivery, and consumption. Proc. IEEE 99(1), 15–27 (2011)

    Article  Google Scholar 

  2. P. Mancarella, MES (multi-energy systems): an overview of concepts and evaluation models. Energy 65(2), 1–17 (2014)

    Article  Google Scholar 

  3. S. Kim, H. Zhang, Q. Sun et al., Consensus-based distributed control for accurate reactive, harmonic and imbalance power sharing in microgrids. IEEE Trans. Smart Grid 99, 1 (2016)

    Google Scholar 

  4. M. Chaudry, N. Jenkins, G. Strbac, Multi-time period combined gas and electricity network optimization. Electr. Power Syst. Res. 78(7), 1265–1279 (2008)

    Article  Google Scholar 

  5. A. Zlotnik, L. Roald, S. Backhaus et al., Coordinated scheduling for interdependent electric power and natural gas infrastructures. IEEE Trans. Power Syst. 32(1), 600–610 (2017)

    Article  Google Scholar 

  6. Q. Zeng, J. Fang, J. Li et al., Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. Appl. Energy 184, 1483–1492 (2016)

    Article  Google Scholar 

  7. X. Chen, C. Kang, M. O’Malley et al., Increasing the flexibility of combined heat and power for wind power integration in China: Modeling and implications. IEEE Trans. Power Syst. 30(4), 1848–1857 (2015)

    Article  Google Scholar 

  8. Z. Li, W. Wu, M. Shahidehpour et al., Combined heat and power dispatch considering pipeline energy storage of district heating network. IEEE Trans. Sustain. Energy 7(1), 12–22 (2016)

    Article  Google Scholar 

  9. Y. Dai, L. Chen, Y. Min et al., Dispatch model of combined heat and power plant considering heat transfer process. IEEE Trans. Sustain. Energy 99, 1 (2017)

    Google Scholar 

  10. A. Shabanpour-Haghighi, A.R. Seifi, An integrated steady-state operation assessment of electrical, natural gas, and district heating networks. IEEE Trans. Power Syst. 31(5), 3636–3647 (2016)

    Article  Google Scholar 

  11. M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad et al., A decomposed solution to multiple-energy carriers optimal power flow. IEEE Trans. Power Syst. 29(2), 707–716 (2014)

    Article  Google Scholar 

  12. P. Mancarella, G. Andersson, J.A. Peças-Lopes, et al., Modelling of integrated multi-energy systems: drivers, requirements, and opportunities. in Power Systems Computation Conference (PSCC), 2016. (IEEE, 2016), pp. 1–22

    Google Scholar 

  13. W. Su, A.Q. Huang, A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers. Appl. Energy 119(119), 341–350 (2014)

    Article  Google Scholar 

  14. A. Molina-García, I. Muñoz-Benavente, A.D. Hansen et al., Demand-side contribution to primary frequency control with wind farm auxiliary control. IEEE Trans. Power Syst. 29(5), 2391–2399 (2014)

    Article  Google Scholar 

  15. X. Xu, H. Jia, H.D. Chiang et al., Dynamic modeling and interaction of hybrid natural gas and electricity supply system in microgrid. IEEE Trans. Power Syst. 30(3), 1212–1221 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuye Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Q. (2019). We-Energy Modelling. In: Energy Internet and We-Energy. Renewable Energy Sources & Energy Storage. Springer, Singapore. https://doi.org/10.1007/978-981-13-0523-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0523-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0522-1

  • Online ISBN: 978-981-13-0523-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics