Skip to main content

Clinical Features of the Central Nervous System

  • Chapter
  • First Online:
Myotonic Dystrophy

Abstract

Progressive muscular weakness is a typical symptom of myotonic dystrophy, but more recently, central nervous system (CNS) involvement has become a critical issue in the disorder. Recent studies have suggested the importance of cerebral involvement in myotonic dystrophy, which influences patients’ quality of life and functioning. CNS dysfunction in myotonic dystrophy has been investigated using various approaches, including cognitive (neuropsychological), neurophysiological, and neuroimaging studies. Studies have suggested that cognitive impairment in the disorder is variable, but several domains of cognition are frequently affected. Neurophysiological studies have examined the pathomechanisms of the disorder using various electrophysiological methods and modalities, such as somatosensory, visual, and auditory. Neuroimaging studies using different techniques have demonstrated that both white and gray matter of the brain are involved in the pathomechanisms of the disorder. Further accumulation of knowledge about the CNS involvement in myotonic dystrophy is required. Future possible directions of research are also discussed from each aspect in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bugiardini E, Meola G. Consensus on cerebral involvement in myotonic dystrophy: workshop report: May 24-27, 2013, Ferrere (AT), Italy. Neuromuscul Disord. 2014;24(5):445–52. https://doi.org/10.1016/j.nmd.2014.01.013.

    Article  CAS  PubMed  Google Scholar 

  2. Meola G, Sansone V. Cerebral involvement in myotonic dystrophies. Muscle Nerve. 2007;36(3):294–306.

    Article  CAS  PubMed  Google Scholar 

  3. Antonini G, Soscia F, Giubilei F, De Carolis A, Gragnani F, Morino S, et al. Health-related quality of life in myotonic dystrophy type 1 and its relationship with cognitive and emotional functioning. J Rehabil Med. 2006;38(3):181–5.

    Article  PubMed  Google Scholar 

  4. Laberge L, Mathieu J, Auclair J, Gagnon E, Noreau L, Gagnon C. Clinical, psychosocial, and central correlates of quality of life in myotonic dystrophy type 1 patients. Eur Neurol. 2013;70(5–6):308–15. https://doi.org/10.1159/000353991.

    Article  CAS  PubMed  Google Scholar 

  5. Rakocevic-Stojanovic V, Peric S, Madzarevic R, Dobricic V, Ralic V, Ilic V, et al. Significant impact of behavioral and cognitive impairment on quality of life in patients with myotonic dystrophy type 1. Clin Neurol Neurosurg. 2014;126:76–81. https://doi.org/10.1016/j.clineuro.2014.08.021.

    Article  CAS  PubMed  Google Scholar 

  6. Gaul C, Schmidt T, Windisch G, Wieser T, Muller T, Vielhaber S, et al. Subtle cognitive dysfunction in adult onset myotonic dystrophy type 1 (DM1) and type 2 (DM2). Neurology. 2006;67(2):350–2.

    Article  CAS  PubMed  Google Scholar 

  7. Baldanzi S, Bevilacqua F, Lorio R, Volpi L, Simoncini C, Petrucci A, et al. Disease awareness in myotonic dystrophy type 1: an observational cross-sectional study. Orphanet J Rare Dis. 2016;11:34. https://doi.org/10.1186/s13023-016-0417-z.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fujino H, Shingaki H, Suwazono S, Ueda Y, Wada C, Nakayama T, et al. Cognitive impairment and quality of life in patients with myotonic dystrophy type 1. Muscle Nerve. 2018;57(5):742–8. https://doi.org/10.1002/mus.26022.

    Article  PubMed  Google Scholar 

  9. Gallais B, Gagnon C, Mathieu J, Richer L. Cognitive decline over time in adults with myotonic dystrophy type 1: a 9-year longitudinal study. Neuromuscul Disord. 2017;27(1):61–72. https://doi.org/10.1016/j.nmd.2016.10.003.

    Article  PubMed  Google Scholar 

  10. Meola G, Sansone V, Perani D, Scarone S, Cappa S, Dragoni C, et al. Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromuscul Disord. 2003;13(10):813–21.

    Article  CAS  PubMed  Google Scholar 

  11. Modoni A, Silvestri G, Pomponi MG, Mangiola F, Tonali PA, Marra C. Characterization of the pattern of cognitive impairment in myotonic dystrophy type 1. Arch Neurol. 2004;61(12):1943–7.

    Article  PubMed  Google Scholar 

  12. Peric S, Mandic-Stojmenovic G, Stefanova E, Savic-Pavicevic D, Pesovic J, Ilic V, et al. Frontostriatal dysexecutive syndrome: a core cognitive feature of myotonic dystrophy type 2. J Neurol. 2015;262(1):142–8. https://doi.org/10.1007/s00415-014-7545-y.

    Article  PubMed  Google Scholar 

  13. Sansone V, Gandossini S, Cotelli M, Calabria M, Zanetti O, Meola G. Cognitive impairment in adult myotonic dystrophies: a longitudinal study. Neurol Sci. 2007;28(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  14. Sistiaga A, Urreta I, Jodar M, Cobo AM, Emparanza J, Otaegui D, et al. Cognitive/personality pattern and triplet expansion size in adult myotonic dystrophy type 1 (DM1): CTG repeats, cognition and personality in DM1. Psychol Med. 2010;40(3):487–95. https://doi.org/10.1017/S0033291709990602.

    Article  CAS  PubMed  Google Scholar 

  15. Winblad S, Lindberg C, Hansen S. Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DM1). Behav Brain Funct. 2006;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68. https://doi.org/10.1146/annurev-psych-113011-143750.

    Article  PubMed  Google Scholar 

  17. Kobayakawa M, Tsuruya N, Kawamura M. Theory of mind impairment in adult-onset myotonic dystrophy type 1. Neurosci Res. 2012;72(4):341–6. https://doi.org/10.1016/j.neures.2012.01.005.

    Article  PubMed  Google Scholar 

  18. Kobayakawa M, Tsuruya N, Takeda A, Suzuki A, Kawamura M. Facial emotion recognition and cerebral white matter lesions in myotonic dystrophy type 1. J Neurol Sci. 2010;290(1–2):48–51. https://doi.org/10.1016/j.jns.2009.11.011.

    Article  PubMed  Google Scholar 

  19. Serra L, Cercignani M, Bruschini M, Cipolotti L, Mancini M, Silvestri G, et al. “I know that you know that I know”: neural substrates associated with social cognition deficits in DM1 patients. PLoS One. 2016;11(6):e0156901. https://doi.org/10.1371/journal.pone.0156901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeda A, Kobayakawa M, Suzuki A, Tsuruya N, Kawamura M. Lowered sensitivity to facial emotions in myotonic dystrophy type 1. J Neurol Sci. 2009;280(1–2):35–9. https://doi.org/10.1016/j.jns.2009.01.014.

    Article  PubMed  Google Scholar 

  21. Winblad S, Hellstrom P, Lindberg C, Hansen S. Facial emotion recognition in myotonic dystrophy type 1 correlates with CTG repeat expansion. J Neurol Neurosurg Psychiatry. 2006;77(2):219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Modoni A, Silvestri G, Vita MG, Quaranta D, Tonali PA, Marra C. Cognitive impairment in myotonic dystrophy type 1 (DM1): a longitudinal follow-up study. J Neurol. 2008;255(11):1737–42. https://doi.org/10.1007/s00415-008-0017-5.

    Article  CAS  PubMed  Google Scholar 

  23. Winblad S, Samuelsson L, Lindberg C, Meola G. Cognition in myotonic dystrophy type 1: a 5-year follow-up study. Eur J Neurol. 2016;23(9):1471–6. https://doi.org/10.1111/ene.13062.

    Article  CAS  PubMed  Google Scholar 

  24. Gagnon C, Meola G, Hebert LJ, Laberge L, Leone M, Heatwole C. Report of the second outcome measures in myotonic dystrophy type 1 (OMMYD-2) international workshop San Sebastian, Spain, October 16, 2013. Neuromuscul Disord. 2015;25(7):603–16. https://doi.org/10.1016/j.nmd.2015.01.008.

    Article  PubMed  Google Scholar 

  25. Gagnon C, Meola G, Hebert LJ, Puymirat J, Laberge L, Leone M. Report of the first outcome measures in myotonic dystrophy type 1 (OMMYD-1) international workshop: Clearwater, Florida, November 30, 2011. Neuromuscul Disord. 2013;23(12):1056–68. https://doi.org/10.1016/j.nmd.2013.07.004.

    Article  PubMed  Google Scholar 

  26. Gallais B, Gagnon C, Mathieu J, Richer L, Jean S, Laberge L. Cognitive deficits associated with sleep apnea in myotonic dystrophy type 1. J Neuromuscul Dis. 2014;1(1):95–8. https://doi.org/10.3233/JND-140012.

    Article  PubMed  Google Scholar 

  27. Gallais B, Montreuil M, Gargiulo M, Eymard B, Gagnon C, Laberge L. Prevalence and correlates of apathy in myotonic dystrophy type 1. BMC Neurol. 2015;15:148. https://doi.org/10.1186/s12883-015-0401-6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heatwole C, Bode R, Johnson N, Quinn C, Martens W, McDermott MP, et al. Patient-reported impact of symptoms in myotonic dystrophy type 1 (PRISM-1). Neurology. 2012;79(4):348–57. https://doi.org/10.1212/WNL.0b013e318260cbe6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Winblad S, Jensen C, Mansson JE, Samuelsson L, Lindberg C. Depression in myotonic dystrophy type 1: clinical and neuronal correlates. Behav Brain Funct. 2010;6:25. https://doi.org/10.1186/1744-9081-6-25.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Douniol M, Jacquette A, Cohen D, Bodeau N, Rachidi L, Angeard N, et al. Psychiatric and cognitive phenotype of childhood myotonic dystrophy type 1. Dev Med Child Neurol. 2012;54(10):905–11. https://doi.org/10.1111/j.1469-8749.2012.04379.x.

    Article  PubMed  Google Scholar 

  31. van Engelen B. Cognitive behaviour therapy plus aerobic exercise training to increase activity in patients with myotonic dystrophy type 1 (DM1) compared to usual care (OPTIMISTIC): study protocol for randomised controlled trial. Trials. 2015;16:224. https://doi.org/10.1186/s13063-015-0737-7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barwick DD, Osselton JW, Walton JN. Electroencephalographic studies in hereditary myopathy. J Neurol Neurosurg Psychiatry. 1965;28:109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beijersbergen RS, Kemp A, van Leeuwen WS. EEG observations in dystrophia myotonica (Curschmann-Steinert). Electroencephalogr Clin Neurophysiol. 1980;49(1–2):143–51.

    Article  CAS  PubMed  Google Scholar 

  34. Thompson DS, Woodward JB, Ringel SP, Nelson LM. Evoked potential abnormalities in myotonic dystrophy. Electroencephalogr Clin Neurophysiol. 1983;56(5):453–6.

    Article  CAS  PubMed  Google Scholar 

  35. Culebras A, Feldman RG, Merk FB. Cytoplasmic inclusion bodies within neurons of the thalamus in myotonic dystrophy. A light and electron microscope study. J Neurol Sci. 1973;19(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  36. Ono S, Inoue K, Mannen T, Kanda F, Jinnai K, Takahashi K. Neuropathological changes of the brain in myotonic dystrophy—some new observations. J Neurol Sci. 1987;81(2–3):301–20.

    Article  CAS  PubMed  Google Scholar 

  37. Wisniewski HM, Berry K, Spiro AJ. Ultrastructure of thalamic neuronal inclusions in myotonic dystrophy. J Neurol Sci. 1975;24(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bartel PR, Lotz BP, Van der Meyden CH. Short-latency somatosensory evoked potentials in dystrophia myotonica. J Neurol Neurosurg Psychiatry. 1984;47(5):524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bartel P, Lotz B, Robinson E, Van der Meyden C. Posterior tibial and sural nerve somatosensory evoked potentials in dystrophia myotonica. J Neurol Sci. 1985;70(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  40. Mochizuki H, Hanajima R, Kowa H, Motoyoshi Y, Ashida H, Kamakura K, et al. Somatosensory evoked potential recovery in myotonic dystrophy. Clin Neurophysiol. 2001;112(5):793–9.

    Article  CAS  PubMed  Google Scholar 

  41. Gott PS, Karnaze DS, Keane JR. Abnormal visual evoked potentials in myotonic dystrophy. Neurology. 1983;33(12):1622–5.

    Article  CAS  PubMed  Google Scholar 

  42. Sandrini G, Gelmi C, Rossi V, Bianchi PE, Alfonsi E, Pacchetti C, et al. Electroretinographic and visual evoked potential abnormalities in myotonic dystrophy. Electroencephalogr Clin Neurophysiol. 1986;64(3):215–7.

    Article  CAS  PubMed  Google Scholar 

  43. Balatsouras DG, Felekis D, Panas M, Xenellis J, Koutsis G, Kladi A, et al. Inner ear dysfunction in myotonic dystrophy type 1. Acta Neurol Scand. 2013;127(5):337–43. https://doi.org/10.1111/ane.12020.

    Article  CAS  PubMed  Google Scholar 

  44. Wright RB, Glantz RH, Butcher J. Hearing loss in myotonic dystrophy. Ann Neurol. 1988;23(2):202–3.

    Article  CAS  PubMed  Google Scholar 

  45. Arakawa K, Tomi H, Tobimatsu S, Kira J. Middle latency auditory-evoked potentials in myotonic dystrophy: relation to the size of the CTG trinucleotide repeat and intelligent quotient. J Neurol Sci. 2003;207(1–2):31–6.

    Article  PubMed  Google Scholar 

  46. Huber SJ, Kissel JT, Shuttleworth EC, Chakeres DW, Clapp LE, Brogan MA. Magnetic resonance imaging and clinical correlates of intellectual impairment in myotonic dystrophy. Arch Neurol. 1989;46(5):536–40.

    Article  CAS  PubMed  Google Scholar 

  47. Jacobson GP, Privitera M, Neils JR, Grayson AS, Yeh HS. The effects of anterior temporal lobectomy (ATL) on the middle-latency auditory evoked potential (MLAEP). Electroencephalogr Clin Neurophysiol. 1990;75(3):230–41.

    Article  CAS  PubMed  Google Scholar 

  48. Woods DL, Clayworth CC. Age-related changes in human middle latency auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1986;65(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  49. Cosi V, Bergamaschi R, Versino M, Callieco R, Sandrini G, Ruiz L. Multimodal evoked potentials in myotonic dystrophy (MyD). Neurophysiol Clin. 1992;22(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  50. Hanafusa H, Motomura N, Asaba H, Sakai T, Kawamura H. Event-related potentials (P300) in myotonic dystrophy. Acta Neurol Scand. 1989;80(2):111–3.

    Article  CAS  PubMed  Google Scholar 

  51. Perini GI, Colombo G, Armani M, Pellegrini A, Ermani M, Miotti M, et al. Intellectual impairment and cognitive evoked potentials in myotonic dystrophy. J Nerv Ment Dis. 1989;177(12):750–4.

    Article  CAS  PubMed  Google Scholar 

  52. Perini GI, Menegazzo E, Ermani M, Zara M, Gemma A, Ferruzza E, et al. Cognitive impairment and (CTG)n expansion in myotonic dystrophy patients. Biol Psychiatry. 1999;46(3):425–31.

    Article  CAS  PubMed  Google Scholar 

  53. Oliveri M, Fierro B, Lo Presti R, Brighina F, La Bua V, Caimi G. P300 and respiratory findings in myotonic muscular dystrophy. Funct Neurol. 1999;14(3):149–54.

    CAS  PubMed  Google Scholar 

  54. Tanaka H, Arai M, Harada M, Hozumi A, Hirata K. Cognition and event-related potentials in adult-onset non-demented myotonic dystrophy type 1. Clin Neurophysiol. 2012;123(2):261–9. https://doi.org/10.1016/j.clinph.2011.06.012.

    Article  CAS  PubMed  Google Scholar 

  55. Kazis A, Kimiskidis V, Georgiadis G, Kapinas K. Cognitive event-related potentials and magnetic resonance imaging in myotonic dystrophy. Neurophysiol Clin. 1996;26(2):75–84.

    Article  CAS  PubMed  Google Scholar 

  56. Donahue LA, Mangla R, Westesson PL. Neuroimaging in myotonic dystrophy type 1. Neurology. 2009;73(22):1931. https://doi.org/10.1212/WNL.0b013e3181c3fdb0.

    Article  PubMed  Google Scholar 

  57. Worku DK. Concurrence of myotonic dystrophy and epilepsy: a case report. J Med Case Rep. 2014;8:427. https://doi.org/10.1186/1752-1947-8-427.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Franke C, Hatt H, Iaizzo PA, Lehmann-Horn F. Characteristics of Na+ channels and cl- conductance in resealed muscle fibre segments from patients with myotonic dystrophy. J Physiol. 1990;425:391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tan SV, Z'Graggen WJ, Boerio D, Turner C, Hanna MG, Bostock H. In vivo assessment of muscle membrane properties in myotonic dystrophy. Muscle Nerve. 2016;54(2):249–57. https://doi.org/10.1002/mus.25025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chisari C, Licitra R, Pellegrini M, Pellegrino M, Rossi B. Fluoxetine blocks myotonic runs and reverts abnormal surface electromyogram pattern in patients with myotonic dystrophy type 1. Clin Neuropharmacol. 2009;32(6):330–4. https://doi.org/10.1097/WNF.0b013e3181ae5546.

    Article  CAS  PubMed  Google Scholar 

  61. Ogata A, Terae S, Fujita M, Tashiro K. Anterior temporal white matter lesions in myotonic dystrophy with intellectual impairment: an MRI and neuropathological study. Neuroradiology. 1998;40(7):411–5.

    Article  CAS  PubMed  Google Scholar 

  62. Caso F, Agosta F, Peric S, Rakocevic-Stojanovic V, Copetti M, Kostic VS, et al. Cognitive impairment in myotonic dystrophy type 1 is associated with white matter damage. PLoS One. 2014;9(8):e104697. https://doi.org/10.1371/journal.pone.0104697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Costanzo A, Di Salle F, Santoro L, Bonavita V, Tedeschi G. Dilated Virchow-Robin spaces in myotonic dystrophy: frequency, extent and significance. Eur Neurol. 2001;46(3):131–9.

    Article  PubMed  Google Scholar 

  64. Minnerop M, Weber B, Schoene-Bake JC, Roeske S, Mirbach S, Anspach C, et al. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain. 2011;134(12):3530–46. https://doi.org/10.1093/brain/awr299.

    Article  PubMed  Google Scholar 

  65. Schneider-Gold C, Bellenberg B, Prehn C, Krogias C, Schneider R, Klein J, et al. Cortical and subcortical grey and white matter atrophy in myotonic dystrophies type 1 and 2 is associated with cognitive impairment, depression and daytime sleepiness. PLoS One. 2015;10(6):e0130352. https://doi.org/10.1371/journal.pone.0130352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baldanzi S, Cecchi P, Fabbri S, Pesaresi I, Simoncini C, Angelini C, et al. Relationship between neuropsychological impairment and grey and white matter changes in adult-onset myotonic dystrophy type 1. Neuroimage Clin. 2016;12:190–7. https://doi.org/10.1016/j.nicl.2016.06.011. eCollection 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wozniak JR, Mueller BA, Lim KO, Hemmy LS, Day JW. Tractography reveals diffuse white matter abnormalities in myotonic dystrophy type 1. J Neurol Sci. 2014;341(1–2):73–8. https://doi.org/10.1016/j.jns.2014.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cabada T, Iridoy M, Jerico I, Lecumberri P, Seijas R, Gargallo A, et al. Brain involvement in myotonic dystrophy type 1: a morphometric and diffusion tensor imaging study with neuropsychological correlation. Arch Clin Neuropsychol. 2017;32(4):401–12. https://doi.org/10.1093/arclin/acx008.

    Article  CAS  PubMed  Google Scholar 

  69. Weston PS, Simpson IJ, Ryan NS, Ourselin S, Fox NC. Diffusion imaging changes in grey matter in Alzheimer’s disease: a potential marker of early neurodegeneration. Alzheimers Res Ther. 2015;7(1):47. https://doi.org/10.1186/s13195-015-0132-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takado Y, Terajima K, Ohkubo M, Okamoto K, Shimohata T, Nishizawa M, et al. Diffuse brain abnormalities in myotonic dystrophy type 1 detected by 3.0 T proton magnetic resonance spectroscopy. Eur Neurol. 2015;73(3–4):247–56. https://doi.org/10.1159/000371575.

    Article  CAS  PubMed  Google Scholar 

  71. Akiguchi I, Nakano S, Shiino A, Kimura R, Inubushi T, Handa J, et al. Brain proton magnetic resonance spectroscopy and brain atrophy in myotonic dystrophy. Arch Neurol. 1999;56(3):325–30.

    Article  CAS  PubMed  Google Scholar 

  72. Chang L, Ernst T, Osborn D, Seltzer W, Leonido-Yee M, Poland RE. Proton spectroscopy in myotonic dystrophy: correlations with CTG repeats. Arch Neurol. 1998;55(3):305–11.

    Article  CAS  PubMed  Google Scholar 

  73. Hashimoto T, Tayama M, Yoshimoto T, Miyazaki M, Harada M, Miyoshi H, et al. Proton magnetic resonance spectroscopy of brain in congenital myotonic dystrophy. Pediatr Neurol. 1995;12(4):335–40.

    Article  CAS  PubMed  Google Scholar 

  74. Vielhaber S, Jakubiczka S, Gaul C, Schoenfeld MA, Debska-Vielhaber G, Zierz S, et al. Brain 1H magnetic resonance spectroscopic differences in myotonic dystrophy type 2 and type 1. Muscle Nerve. 2006;34(2):145–52. https://doi.org/10.1002/mus.20565.

    Article  CAS  PubMed  Google Scholar 

  75. Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci. 2014;6:57. https://doi.org/10.3389/fnmol.2013.00057.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108. https://doi.org/10.1016/j.neuron.2013.07.037.

    Article  CAS  PubMed  Google Scholar 

  77. Serra L, Silvestri G, Petrucci A, Basile B, Masciullo M, Makovac E, et al. Abnormal functional brain connectivity and personality traits in myotonic dystrophy type 1. JAMA Neurol. 2014;71(5):603–11. https://doi.org/10.1001/jamaneurol.2014.130.

    Article  PubMed  Google Scholar 

  78. Serra L, Mancini M, Silvestri G, Petrucci A, Masciullo M, Spano B, et al. Brain connectomics’ modification to clarify motor and nonmotor features of myotonic dystrophy type 1. Neural Plast. 2016;2016:2696085. https://doi.org/10.1155/2016/2696085.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Peric S, Brajkovic L, Belanovic B, Ilic V, Salak-Djokic B, Basta I, et al. Brain positron emission tomography in patients with myotonic dystrophy type 1 and type 2. J Neurol Sci. 2017;378:187–92. https://doi.org/10.1016/j.jns.2017.05.013.

    Article  PubMed  Google Scholar 

  80. Meola G, Sansone V, Perani D, Colleluori A, Cappa S, Cotelli M, et al. Reduced cerebral blood flow and impaired visual-spatial function in proximal myotonic myopathy. Neurology. 1999;53(5):1042–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Ministry of Health, Labour and Welfare of Japan (H28-Nanchitou(Nan)-Ippan-030), JSPS KAKENHI (16K09733 and 17K14067), and Japan Agency for Medical Research and Development (AMED) (17ek0109259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Fujino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujino, H., Suwazono, S., Takado, Y. (2018). Clinical Features of the Central Nervous System. In: Takahashi, M., Matsumura, T. (eds) Myotonic Dystrophy. Springer, Singapore. https://doi.org/10.1007/978-981-13-0508-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0508-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0507-8

  • Online ISBN: 978-981-13-0508-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics