Skip to main content

Clinical Features of Skeletal Muscle and Their Underlying Molecular Mechanism

  • Chapter
  • First Online:
Myotonic Dystrophy
  • 604 Accesses

Abstract

The cardinal features of myotonic dystrophy are muscle stiffness (myotonia) and muscle wasting. RNA gain-of-function has been established as an underlying disease mechanism. Myotonia has been shown to be the result of the missplicing of chloride channel mRNA caused by changes to RNA-binding proteins, including MBNL and CELF. Many types of RNA that play essential roles in skeletal muscle function have been identified as possibly being implicated in muscle wasting. Recently, other mechanisms, such as repeat-associated non-ATG translation, have been proposed, and their contribution to muscle phenotypes is currently the subject of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Streib EW, Sun SF. Distribution of electrical myotonia in myotonic muscular dystrophy. Ann Neurol. 1983;14:80–2.

    CAS  PubMed  Google Scholar 

  2. Logigian EL, Ciafaloni E, Quinn LC, Dilek N, Pandya S, Moxley RT, Thornton CA. Severity, type, and distribution of myotonic discharges are different in type 1 and type 2 myotonic dystrophy. Muscle Nerve. 2007;35:479–85.

    Article  Google Scholar 

  3. Ricker K, Meinck HM. Comparison of myotonic discharges in myotonia congenita and dystrophia myotonica. Z Neurol. 1972;201:62–72.

    CAS  PubMed  Google Scholar 

  4. Fournier E, Arzel M, Sternberg D, Vicart S, Laforet P, Eymard B, Willer J-C, Tabti N, Fontaine B. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol. 2004;56:650–61.

    Article  CAS  Google Scholar 

  5. Fournier E, Viala K, Gervais H, et al. Cold extends electromyography distinction between ion channel mutations causing myotonia. Ann Neurol. 2006;60:356–65.

    Article  Google Scholar 

  6. Cannon SC. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci. 2006;29:387–415.

    Article  CAS  Google Scholar 

  7. Lipicky RJ, Bryant SH, Salmon JH. Cable parameters, sodium, potassium, chloride, and water content, and potassium efflux in isolated external intercostal muscle of normal volunteers and patients with myotonia congenita. J Clin Invest. 1971;50:2091–103.

    Article  CAS  Google Scholar 

  8. Furman RE, Barchi RL. The pathophysiology of myotonia produced by aromatic carboxylic acids. Ann Neurol. 1978;4:357–65.

    Article  CAS  Google Scholar 

  9. Renaud JF, Desnuelle C, Schmid-Antomarchi H, Hugues M, Serratrice G, Lazdunski M. Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature. 1986;319:678–80.

    Article  CAS  Google Scholar 

  10. Behrens MI, Jalil P, Serani A, Vergara F, Alvarez O. Possible role of apamin-sensitive K+ channels in myotonic dystrophy. Muscle Nerve. 1994;17:1264–70.

    Article  CAS  Google Scholar 

  11. Mounsey JP, Xu P, John JE, Horne LT, Gilbert J, Roses AD, Moorman JR. Modulation of skeletal muscle sodium channels by human myotonin protein kinase. J Clin Invest. 1995;95:2379–84.

    Article  CAS  Google Scholar 

  12. Mounsey JP, Mistry DJ, Ai CW, Reddy S, Moorman JR. Skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinase. Hum Mol Genet. 2000;9:2313–20.

    Article  CAS  Google Scholar 

  13. Franke C, Hatt H, Iaizzo PA, Lehmann-Horn F. Characteristics of Na+ channels and Cl- conductance in resealed muscle fibre segments from patients with myotonic dystrophy. J Physiol. 1990;425:391–405.

    Article  CAS  Google Scholar 

  14. Franke C, Iaizzo PA, Hatt H, Spittelmeister W, Ricker K, Lehmann-Horn F. Altered Na+ channel activity and reduced Cl− conductance cause hyperexcitability in recessive generalized myotonia (becker). Muscle Nerve. 1991;14:762–70.

    Article  CAS  Google Scholar 

  15. Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D, Krym M, Thornton CA. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science. 2000;289:1769–73.

    Article  CAS  Google Scholar 

  16. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293:864–7.

    Article  CAS  Google Scholar 

  17. Ranum LPW, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci. 2006;29:259–77.

    Article  CAS  Google Scholar 

  18. Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell. 2002;10:35–44.

    Article  CAS  Google Scholar 

  19. Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell. 2002;10:45–53.

    Article  Google Scholar 

  20. Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, Timmers AM, Hauswirth WW, Swanson MS. A muscleblind knockout model for myotonic dystrophy. Science. 2003;302:1978–80.

    Article  CAS  Google Scholar 

  21. Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 2000;19:4439–48.

    Article  CAS  Google Scholar 

  22. Kuyumcu-Martinez NM, Wang G-S, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell. 2007;28:68–78.

    Article  CAS  Google Scholar 

  23. Kimura T, Takahashi MP, Okuda Y, Kaido M, Fujimura H, Yanagihara T, Sakoda S. The expression of ion channel mRNAs in skeletal muscles from patients with myotonic muscular dystrophy. Neurosci Lett. 2000;295:93–6.

    Article  CAS  Google Scholar 

  24. Kimura T, Takahashi MP, Fujimura H, Sakoda S. Expression and distribution of a small-conductance calcium-activated potassium channel (SK3) protein in skeletal muscles from myotonic muscular dystrophy patients and congenital myotonic mice. Neurosci Lett. 2003;347:191–5.

    Article  CAS  Google Scholar 

  25. Pribnow D, Johnson-Pais T, Bond CT, Keen J, Johnson RA, Janowsky A, Silvia C, Thayer M, Maylie J, Adelman JP. Skeletal muscle and small-conductance calcium-activated potassium channels. Muscle Nerve. 1999;22:742–50.

    Article  CAS  Google Scholar 

  26. Ricker K, Koch MC, Lehmann-Horn F, Pongratz D, Otto M, Heine R, Moxley RT. Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts. Neurology. 1994;44:1448–52.

    Article  CAS  Google Scholar 

  27. Matsumura T, Kimura T, Kokunai Y, Nakamori M, Ogata K, Fujimura H, Takahashi MP, Mochizuki H, Sakoda S. Simple questionnaire for screening patients with myotonic dystrophy type 1. Neurol Clin Neurosci. 2014;2:97–103.

    Article  Google Scholar 

  28. Solbakken G, Ørstavik K, Hagen T, Dietrichs E, Naerland T. Major involvement of trunk muscles in myotonic dystrophy type 1. Acta Neurol Scand. 2016;134:467–73.

    Article  CAS  Google Scholar 

  29. DiPaolo G, Jimenez-Moreno C, Nikolenko N, Atalaia A, Monckton DG, Guglieri M, Lochmüller H. Functional impairment in patients with myotonic dystrophy type 1 can be assessed by an ataxia rating scale (SARA). J Neurol. 2017;264:701–8.

    Article  Google Scholar 

  30. Bouchard J-P, Cossette L, Bassez G, Puymirat J. Natural history of skeletal muscle involvement in myotonic dystrophy type 1: a retrospective study in 204 cases. J Neurol. 2015;262:285–93.

    Article  CAS  Google Scholar 

  31. Hammarén E, Kjellby-Wendt G, Lindberg C. Muscle force, balance and falls in muscular impaired individuals with myotonic dystrophy type 1: a five-year prospective cohort study. Neuromuscul Disord. 2015;25:141–8.

    Article  Google Scholar 

  32. Schoser B. Myotonic dystrophies type 1 and 2. In: Goebel CAS HH, Weller RO, editors. Muscle disease pathology and genetics. 2nd ed. Chichester: Wiley-Blackwell; 2013. p. 273–83.

    Chapter  Google Scholar 

  33. Dubowitz V, Sewry CA, Oldfors A, Lane RJM. Muscular dystrophies and allied disorders V: facioscapulohumeral, myotonic and oculopharyngeal muscular dystrophies. In: Dubowitz V, Sewry CA, Oldfors A, editors. Muscle biopsy: a practical approach: Saunders; 2013. p. 345–57.

    Google Scholar 

  34. Tohgi H, Kawamorita A, Utsugisawa K, Yamagata M, Sano M. Muscle histopathology in myotonic dystrophy in relation to age and muscular weakness. Muscle Nerve. 1994;17:1037–43.

    Article  CAS  Google Scholar 

  35. Tanabe Y, Nonaka I. Congenital myotonic dystrophy. Changes in muscle pathology with ageing. J Neurol Sci. 1987;77:59–68.

    Article  CAS  Google Scholar 

  36. Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet. 2005;14:2189–200.

    Article  CAS  Google Scholar 

  37. Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen RT, Thornton CA. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel. Hum Mol Genet. 2012;21:1312–24.

    Article  CAS  Google Scholar 

  38. Hino S-I, Kondo S, Sekiya H, et al. Molecular mechanisms responsible for aberrant splicing of SERCA1 in myotonic dystrophy type 1. Hum Mol Genet. 2007;16:2834–43.

    Article  CAS  Google Scholar 

  39. Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, Casarotto MG, Dirksen RT, Dulhunty AF. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium. 2009;45:264–74.

    Article  CAS  Google Scholar 

  40. Zhao Y, Ogawa H, Yonekura S-I, Mitsuhashi H, Mitsuhashi S, Nishino I, Toyoshima C, Ishiura S. Functional analysis of SERCA1b, a highly expressed SERCA1 variant in myotonic dystrophy type 1 muscle. Biochim Biophys Acta Mol basis Dis. 2015;1852:2042–7.

    Article  CAS  Google Scholar 

  41. Benders AAGM, Wevers RA, Veerkamp JH. Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody’s disease. Acta Physiol Scand. 1996;156:355–67.

    Article  CAS  Google Scholar 

  42. Santoro M, Piacentini R, Masciullo M, Bianchi MLE, Modoni A, Podda MV, Ricci E, Silvestri G, Grassi C. Alternative splicing alterations of Ca2+ handling genes are associated with Ca2+ signal dysregulation in myotonic dystrophy type 1 (DM1) and type 2 (DM2) myotubes. Neuropathol Appl Neurobiol. 2014;40:464–76.

    Article  CAS  Google Scholar 

  43. Nakamori M, Kimura T, Fujimura H, Takahashi MP, Sakoda S. Altered mRNA splicing of dystrophin in type 1 myotonic dystrophy. Muscle Nerve. 2007;36:251–7.

    Article  CAS  Google Scholar 

  44. Nakamori M, Sobczak K, Puwanant A, et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol. 2013;74:862–72.

    Article  CAS  Google Scholar 

  45. Rau F, Lainé J, Ramanoudjame L, et al. Abnormal splicing switch of DMD’s penultimate exon compromises muscle fibre maintenance in myotonic dystrophy. Nat Commun. 2015;6:7205.

    Article  Google Scholar 

  46. Nakamori M, Kimura T, Kubota T, Matsumura T, Sumi H, Fujimura H, Takahashi MP, Sakoda S. Aberrantly spliced alpha-dystrobrevin alters alpha-syntrophin binding in myotonic dystrophy type 1. Neurology. 2008;70:677–85.

    Article  CAS  Google Scholar 

  47. Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa G-C, Farsad K, Wenk MR, De Camilli P. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science. 2002;297:1193–6.

    Article  CAS  Google Scholar 

  48. Fugier C, Klein AF, Hammer C, et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med. 2011;17:720–5.

    Article  CAS  Google Scholar 

  49. Nicot A-S, Toussaint A, Tosch V, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet. 2007;39:1134–9.

    Article  CAS  Google Scholar 

  50. Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Disord. 2010;20:223–8.

    Article  Google Scholar 

  51. Buj-Bello A, Furling D, Tronchère H, Laporte J, Lerouge T, Butler-Browne GS, Mandel J-L. Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells. Hum Mol Genet. 2002;11:2297–307.

    Article  CAS  Google Scholar 

  52. Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet. 2006;15:2087–97.

    Article  CAS  Google Scholar 

  53. Kino Y, Washizu C, Kurosawa M, Oma Y, Hattori N, Ishiura S, Nukina N. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins. Hum Mol Genet. 2015;24:740–56.

    Article  CAS  Google Scholar 

  54. Adereth Y, Dammai V, Kose N, Li R, Hsu T. RNA-dependent integrin alpha3 protein localization regulated by the Muscleblind-like protein MLP1. Nat Cell Biol. 2005;7:1240–7.

    Article  Google Scholar 

  55. Masuda A, Andersen HS, Doktor TK, Okamoto T, Ito M, Andresen BS, Ohno K. CUGBP1 and MBNL1 preferentially bind to 3’ UTRs and facilitate mRNA decay. Sci Rep. 2012;2:209.

    Article  Google Scholar 

  56. Wang ET, Cody NAL, Jog S, et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell. 2012;150:710–24.

    Article  CAS  Google Scholar 

  57. Du H, Cline MS, Osborne RJ, et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat Struct Mol Biol. 2010;17:187–93.

    Article  CAS  Google Scholar 

  58. Timchenko NA, Cai ZJ, Welm AL, Reddy S, Ashizawa T, Timchenko LT. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J Biol Chem. 2001;276:7820–6.

    Article  CAS  Google Scholar 

  59. Timchenko NA, Patel R, Iakova P, Cai Z-J, Quan L, Timchenko LT. Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. J Biol Chem. 2004;279:13129–39.

    Article  CAS  Google Scholar 

  60. Salisbury E, Sakai K, Schoser B, Huichalaf C, Schneider-Gold C, Nguyen H, Wang G-L, Albrecht JH, Timchenko LT. Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1. Exp Cell Res. 2008;314:2266–78.

    Article  CAS  Google Scholar 

  61. Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G, Woodgett J, Killian J, Timchenko NA, Timchenko LT. GSK3β mediates muscle pathology in myotonic dystrophy. J Clin Invest. 2012;122:4461–72.

    Article  CAS  Google Scholar 

  62. About AMO-02. http://www.amo-pharma.com/amo_02.htm. Accessed 31 Jan 2017.

  63. Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell. 2005;20:483–9.

    Article  CAS  Google Scholar 

  64. Filippova GN, Thienes CP, Penn BH, Cho DH, Hu YJ, Moore JM, Klesert TR, Lobanenkov VV, Tapscott SJ. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat Genet. 2001;28:335–43.

    Article  CAS  Google Scholar 

  65. Zu T, Gibbens B, Doty NS, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A. 2011;108:260–5.

    Article  CAS  Google Scholar 

  66. Cleary JD, Ranum LPW. Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Curr Opin Genet Dev. 2014;26:6–15.

    Article  CAS  Google Scholar 

  67. Kearse MG, Todd PK. Repeat-associated non-AUG translation and its impact in neurodegenerative disease. Neurotherapeutics. 2014;11:721–31.

    Article  CAS  Google Scholar 

  68. Yamashita Y, Matsuura T, Shinmi J, et al. Four parameters increase the sensitivity and specificity of the exon array analysis and disclose 25 novel aberrantly spliced exons in myotonic dystrophy. J Hum Genet. 2012;57:368–74.

    Article  CAS  Google Scholar 

  69. Orengo JP, Chambon P, Metzger D, Mosier DR, Snipes GJ, Cooper TA. Expanded CTG repeats within the DMPK 3’ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proc Natl Acad Sci U S A. 2008;105:2646–51.

    Article  CAS  Google Scholar 

  70. Ohsawa N, Koebis M, Suo S, Nishino I, Ishiura S. Alternative splicing of PDLIM3/ALP, for α-actinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy. Biochem Biophys Res Commun. 2011;409:64–9.

    Article  CAS  Google Scholar 

  71. Koebis M, Ohsawa N, Kino Y, Sasagawa N, Nishino I, Ishiura S. Alternative splicing of myomesin 1 gene is aberrantly regulated in myotonic dystrophy type 1. Genes Cells. 2011;16:961–72.

    Article  CAS  Google Scholar 

  72. Rinaldi F, Terracciano C, Pisani V, et al. Aberrant splicing and expression of the non muscle myosin heavy-chain gene MYH14 in DM1 muscle tissues. Neurobiol Dis. 2012;45:264–71.

    Article  CAS  Google Scholar 

  73. Wagner SD, Struck AJ, Gupta R, Farnsworth DR, Mahady AE, Eichinger K, Thornton CA, Wang ET, Berglund JA. Dose-dependent regulation of alternative splicing by MBNL proteins reveals biomarkers for myotonic dystrophy. PLoS Genet. 2016;12:e1006316.

    Article  Google Scholar 

  74. Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 2001;29:40–7.

    Article  CAS  Google Scholar 

  75. Nakamori M, Takahashi MP. Myotonic dystrophy. In: Translational research in muscular dystrophy. Tokyo: Springer; 2016. p. 39–61.

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was partly supported by grants from the Ministry of Health, Labour and Welfare of Japan (H28-Nanchitou(Nan)-Ippan-030) and Japan Agency for Medical Research and Development (AMED) (17ek0109259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori P. Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, M.P. (2018). Clinical Features of Skeletal Muscle and Their Underlying Molecular Mechanism. In: Takahashi, M., Matsumura, T. (eds) Myotonic Dystrophy. Springer, Singapore. https://doi.org/10.1007/978-981-13-0508-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0508-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0507-8

  • Online ISBN: 978-981-13-0508-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics