Skip to main content

Therapeutic Antibody Discovery in Infectious Diseases Using Single-Cell Analysis

  • Chapter
  • First Online:
Single Cell Biomedicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1068))

Abstract

Since the discovery of mouse hybridoma technology by Kohler and Milstein in 1975, significant progress has been made in monoclonal antibody production. Advances in B cell immortalization and phage display technologies have generated a myriad of valuable monoclonal antibodies for diagnosis and treatment. Technological breakthroughs in various fields of ‘omics have shed crucial insights into cellular heterogeneity of a biological system in which the functional individuality of a single cell must be considered. Based on this important concept, remarkable discoveries in single-cell analysis have made in identifying and isolating functional B cells that produce beneficial therapeutic monoclonal antibodies. In this review, we will discuss three traditional methods of antibody discovery. Recent technological platforms for single-cell antibody discovery will be reviewed. We will discuss the application of the single-cell analysis in finding therapeutic antibodies for human immunodeficiency virus and emerging Zika arbovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  2. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7:9–14. https://doi.org/10.4161/19420862.2015.989042

    Article  PubMed  CAS  Google Scholar 

  3. Fitzgerald V, Leonard P (2017) Single cell screening approaches for antibody discovery. Methods 116:34–42. https://doi.org/10.1016/j.ymeth.2016.11.006

    Article  PubMed  CAS  Google Scholar 

  4. Ortho Multicenter Transplant Study, G (1985) A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N Engl J Med 313:337–342. https://doi.org/10.1056/NEJM198508083130601

    Article  Google Scholar 

  5. Brekke OH, Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2:52–62. https://doi.org/10.1038/nrd984

    Article  PubMed  CAS  Google Scholar 

  6. Sun LK et al (1987) Chimeric antibody with human constant regions and mouse variable regions directed against carcinoma-associated antigen 17-1A. Proc Natl Acad Sci U S A 84:214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525. https://doi.org/10.1038/321522a0

    Article  PubMed  CAS  Google Scholar 

  8. Love KR, Bagh S, Choi J, Love JC (2013) Microtools for single-cell analysis in biopharmaceutical development and manufacturing. Trends Biotechnol 31:280–286. https://doi.org/10.1016/j.tibtech.2013.03.001

    Article  PubMed  CAS  Google Scholar 

  9. Aggarwal SR (2012) What’s fueling the biotech engine-2011 to 2012. Nat Biotechnol 30:1191–1197. https://doi.org/10.1038/nbt.2437

    Article  PubMed  CAS  Google Scholar 

  10. Goodman M (2009) Market watch: sales of biologics to show robust growth through to 2013. Nat Rev Drug Discov 8:837. https://doi.org/10.1038/nrd3040

    Article  PubMed  CAS  Google Scholar 

  11. Urban PL et al (2011) Carbon-13 labelling strategy for studying the ATP metabolism in individual yeast cells by micro-arrays for mass spectrometry. Mol BioSyst 7:2837–2840. https://doi.org/10.1039/C1MB05248A

    Article  PubMed  CAS  Google Scholar 

  12. Nemes P, Knolhoff AM, Rubakhin SS, Sweedler JV (2011) Metabolic differentiation of neuronal phenotypes by single-cell capillary electrophoresis–electrospray ionization-mass spectrometry. Anal Chem 83:6810–6817. https://doi.org/10.1021/ac2015855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kuppers R (2003) B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol 3:801–812. https://doi.org/10.1038/nri1201

    Article  PubMed  CAS  Google Scholar 

  14. Wang S (2011) Advances in the production of human monoclonal antibodies. Antibody Technol J 2011:4. https://doi.org/10.2147/ANTI.S20195

    Article  Google Scholar 

  15. Yamashita M, Katakura Y, Shirahata S (2007) Recent advances in the generation of human monoclonal antibody. Cytotechnology 55:55–60. https://doi.org/10.1007/s10616-007-9072-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Reichert JM (2001) Monoclonal antibodies in the clinic. Nat Biotechnol 19:819–822. https://doi.org/10.1038/nbt0901-819

    Article  PubMed  CAS  Google Scholar 

  17. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078. https://doi.org/10.1038/nbt0905-1073

    Article  PubMed  CAS  Google Scholar 

  18. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338. https://doi.org/10.1038/nrd3003

    Article  PubMed  CAS  Google Scholar 

  19. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  20. Lim BN et al (2014) Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 36:2381–2392. https://doi.org/10.1007/s10529-014-1635-x

    Article  PubMed  CAS  Google Scholar 

  21. Thie H, Meyer T, Schirrmann T, Hust M, Dubel S (2008) Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 9:439–446

    Article  CAS  PubMed  Google Scholar 

  22. Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57:486–498. https://doi.org/10.1016/j.ymeth.2012.06.012

    Article  PubMed  CAS  Google Scholar 

  23. Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M (2009) A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol 9:6. https://doi.org/10.1186/1472-6750-9-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vaughan TJ et al (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314. https://doi.org/10.1038/nbt0396-309

    Article  PubMed  CAS  Google Scholar 

  25. Willats WG, Gilmartin PM, Mikkelsen JD, Knox JP (1999) Cell wall antibodies without immunization: generation and use of de-esterified homogalacturonan blockspecific antibodies from a naive phage display library. Plant J 18:57–65

    Article  CAS  PubMed  Google Scholar 

  26. Ayat H et al (2013) Isolation of scFv antibody fragments against HER2 and CEA tumor antigens from combinatorial antibody libraries derived from cancer patients. Biologicals 41:345–354. https://doi.org/10.1016/j.biologicals.2013.05.004

    Article  PubMed  CAS  Google Scholar 

  27. Braunagel M, Little M (1997) Construction of a semisynthetic antibody library using trinucleotide oligos. Nucleic Acids Res 25:4690–4691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andris-Widhopf J, Rader C, Steinberger P, Fuller R, Barbas CF 3rd. (2000) Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Methods 242:159–181

    Article  CAS  PubMed  Google Scholar 

  29. Low NM, Holliger PH, Winter G (1996) Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 260:359–368

    Article  CAS  PubMed  Google Scholar 

  30. Sblattero D, Bradbury A (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 18:75–80. https://doi.org/10.1038/71958

    Article  PubMed  CAS  Google Scholar 

  31. Christensen PA et al (2009) Modifying antibody specificity by chain shuffling of V/V between antibodies with related specificities. Scand J Immunol 69:1–10. https://doi.org/10.1111/j.1365-3083.2008.02164.x

    Article  PubMed  CAS  Google Scholar 

  32. Fujii R, Kitaoka M, Hayashi K (2004) One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res 32:e145. https://doi.org/10.1093/nar/gnh147

    Article  PubMed  PubMed Central  Google Scholar 

  33. Holland EG et al (2013) AXM mutagenesis: an efficient means for the production of libraries for directed evolution of proteins. J Immunol Methods 394:55–61. https://doi.org/10.1016/j.jim.2013.05.003

    Article  PubMed  CAS  Google Scholar 

  34. Hammers CM, Stanley JR (2014) Antibody phage display: technique and applications. J Invest Dermatol 134:e17. https://doi.org/10.1038/jid.2013.521

    Article  PubMed Central  CAS  Google Scholar 

  35. Schirrmann T, Meyer T, Schutte M, Frenzel A, Hust M (2011) Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 16:412–426. https://doi.org/10.3390/molecules16010412

    Article  PubMed  CAS  Google Scholar 

  36. Fukushi S et al (2012) Antigen-capture ELISA for the detection of Rift Valley fever virus nucleoprotein using new monoclonal antibodies. J Virol Methods 180:68–74. https://doi.org/10.1016/j.jviromet.2011.12.013

    Article  PubMed  CAS  Google Scholar 

  37. de Kruif J, Terstappen L, Boel E, Logtenberg T (1995) Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc Natl Acad Sci U S A 92:3938–3942

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turunen L, Takkinen K, Soderlund H, Pulli T (2009) Automated panning and screening procedure on microplates for antibody generation from phage display libraries. J Biomol Screen 14:282–293. https://doi.org/10.1177/1087057108330113

    Article  PubMed  CAS  Google Scholar 

  39. Dias-Neto E et al (2009) Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One 4:e8338. https://doi.org/10.1371/journal.pone.0008338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ravn U et al (2010) By-passing in vitro screening--next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res 38:e193. https://doi.org/10.1093/nar/gkq789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. t Hoen PA et al (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631. https://doi.org/10.1016/j.ab.2011.11.005

    Article  CAS  Google Scholar 

  42. Fulwyler MJ (1965) Electronic separation of biological cells by volume. Science 150:910–911

    Article  CAS  PubMed  Google Scholar 

  43. Smith K et al (2009) Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4:372–384. https://doi.org/10.1038/nprot.2009.3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chiem NH, Harrison DJ (1998) Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination. Clin Chem 44:591–598

    PubMed  CAS  Google Scholar 

  45. Wheeler AR et al (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581–3586

    Article  CAS  PubMed  Google Scholar 

  46. Cheong R, Paliwal S, Levchenko A (2010) High-content screening in microfluidic devices. Expert Opin Drug Discov 5:715–720. https://doi.org/10.1517/17460441.2010.495116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239. https://doi.org/10.1038/nature06385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ogunniyi AO, Story CM, Papa E, Guillen E, Love JC (2009) Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4:767–782. https://doi.org/10.1038/nprot.2009.40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ronan JL, Story CM, Papa E, Love JC (2009) Optimization of the surfaces used to capture antibodies from single hybridomas reduces the time required for microengraving. J Immunol Methods 340:164–169. https://doi.org/10.1016/j.jim.2008.10.018

    Article  PubMed  CAS  Google Scholar 

  50. Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24:703–707. https://doi.org/10.1038/nbt1210

    Article  PubMed  CAS  Google Scholar 

  51. Esfandiary L et al (2016) Single-cell antibody nanowells: a novel technology in detecting anti-SSA/Ro60- and anti-SSB/La autoantibody-producing cells in peripheral blood of rheumatic disease patients. Arthritis Res Ther 18:107. https://doi.org/10.1186/s13075-016-1010-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nguyen CQ, Ogunniyi AO, Karabiyik A, Love JC (2013) Single-Cell analysis reveals Isotype-specific autoreactive B cell repertoires in Sjögren’s syndrome. PLoS One 8:e58127. https://doi.org/10.1371/journal.pone.0058127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ogunniyi AO et al (2014) Profiling human antibody responses by integrated single-cell analysis. Vaccine 32:2866–2873. https://doi.org/10.1016/j.vaccine.2014.02.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tsioris K et al (2015) Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integr Biol (Camb) 7:1587–1597. https://doi.org/10.1039/c5ib00169b

    Article  CAS  Google Scholar 

  55. Mahy M et al (2017) Producing HIV estimates: from global advocacy to country planning and impact measurement. Glob Health Action 10:1291–1169. https://doi.org/10.1080/16549716.2017.1291169

    Article  Google Scholar 

  56. Poorolajal J, Hooshmand E, Mahjub H, Esmailnasab N, Jenabi E (2016) Survival rate of AIDS disease and mortality in HIV-infected patients: a meta-analysis. Public Health 139:3–12. https://doi.org/10.1016/j.puhe.2016.05.004

    Article  PubMed  CAS  Google Scholar 

  57. Lelievre JD, Levy Y (2016) HIV-1 prophylactic vaccines: state of the art. J Virus Erad 2:5–11

    PubMed  PubMed Central  Google Scholar 

  58. Klein F et al (2013) Antibodies in HIV-1 vaccine development and therapy. Science 341:1199–1204. https://doi.org/10.1126/science.1241144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ahmad M, Ahmed OM, Schnepp B, Johnson PR (2017) Engineered expression of broadly neutralizing antibodies against human immunodeficiency virus. Annu Rev Virol. https://doi.org/10.1146/annurev-virology-101416-041929

  60. Brady JM, Baltimore D, Balazs AB (2017) Antibody gene transfer with adeno-associated viral vectors as a method for HIV prevention. Immunol Rev 275:324–333. https://doi.org/10.1111/imr.12478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Deal CE, Balazs AB (2015) Vectored antibody gene delivery for the prevention or treatment of HIV infection. Curr Opin HIV AIDS 10:190–197. https://doi.org/10.1097/COH.0000000000000145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Scheid JF et al (2009) A method for identification of HIV gp140 binding memory B cells in human blood. J Immunol Methods 343:65–67. https://doi.org/10.1016/j.jim.2008.11.012

    Article  PubMed  CAS  Google Scholar 

  63. Tiller T et al (2008) Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 329:112–124. https://doi.org/10.1016/j.jim.2007.09.017

    Article  PubMed  CAS  Google Scholar 

  64. Wardemann H et al (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377. https://doi.org/10.1126/science.1086907

    Article  PubMed  CAS  Google Scholar 

  65. Scheid JF et al (2009) Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:636–640. https://doi.org/10.1038/nature07930

    Article  PubMed  CAS  Google Scholar 

  66. Klein F et al (2012) Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J Exp Med 209:1469–1479. https://doi.org/10.1084/jem.20120423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Walker LM et al (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:466–470. https://doi.org/10.1038/nature10373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ho IY et al (2016) Refined protocol for generating monoclonal antibodies from single human and murine B cells. J Immunol Methods 438:67–70. https://doi.org/10.1016/j.jim.2016.09.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Caskey M et al (2015) Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522:487–491. https://doi.org/10.1038/nature14411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Baba TW et al (2000) Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6:200–206. https://doi.org/10.1038/72309

    Article  PubMed  CAS  Google Scholar 

  71. Hessell AJ et al (2009) Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat Med 15:951–954. https://doi.org/10.1038/nm.1974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Moldt B et al (2012) Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci U S A 109:18921–18925. https://doi.org/10.1073/pnas.1214785109

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mascola JR et al (1999) Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 73:4009–4018

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Gautam R et al (2016) A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 533:105–109. https://doi.org/10.1038/nature17677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Shingai M et al (2014) Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J Exp Med 211:2061–2074. https://doi.org/10.1084/jem.20132494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Saunders KO et al (2015) Sustained delivery of a broadly neutralizing antibody in nonhuman Primates confers long-term protection against simian/human immunodeficiency virus infection. J Virol 89:5895–5903. https://doi.org/10.1128/JVI.00210-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Araujo AQ, Silva MT, Araujo AP (2016) Zika virus-associated neurological disorders: a review. Brain 139:2122–2130. https://doi.org/10.1093/brain/aww158

    Article  PubMed  Google Scholar 

  78. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D (2017) An update on Zika virus infection. Lancet. https://doi.org/10.1016/S0140-6736(17)31450-2

  79. Schuler-Faccini L et al (2016) Possible association between Zika Virus Infection and Microcephaly – Brazil, 2015. MMWR Morb Mortal Wkly Rep 65:59–62. https://doi.org/10.15585/mmwr.mm6503e2

    Article  PubMed  Google Scholar 

  80. Reagan-Steiner S et al (2017) Evaluation of placental and fetal tissue specimens for Zika Virus Infection – 50 States and District of Columbia, January–December, 2016. MMWR Morb Mortal Wkly Rep 66:636–643. https://doi.org/10.15585/mmwr.mm6624a3

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oehler E et al (2014) Zika virus infection complicated by Guillain-Barre syndrome—case report, French Polynesia, December 2013. Euro surveillance: bulletin Europeen sur les maladies transmissibles = Eur Commun Dis Bull 19:4–6

    Google Scholar 

  82. Frontera JA, da Silva IR (2016) Zika getting on your nerves? The association with the Guillain-Barre syndrome. N Engl J Med 375:1581–1582. https://doi.org/10.1056/NEJMe1611840

    Article  PubMed  Google Scholar 

  83. Wu X et al (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–861. https://doi.org/10.1126/science.1187659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Scheid JF et al (2011) Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:1633–1637. https://doi.org/10.1126/science.1207227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. McLellan JS et al (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480:336–343. https://doi.org/10.1038/nature10696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wu X et al (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333:1593–1602. https://doi.org/10.1126/science.1207532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bonsignori M et al (2012) Two distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: implications for vaccine design. J Virol 86:4688–4692. https://doi.org/10.1128/JVI.07163-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhao H et al (2016) Structural basis of Zika Virus-specific antibody protection. Cell 166:1016–1027. https://doi.org/10.1016/j.cell.2016.07.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Robbiani DF et al (2017) Recurrent potent human neutralizing antibodies to Zika Virus in Brazil and Mexico. Cell 169:597–609. e511. https://doi.org/10.1016/j.cell.2017.04.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yang M, Dent M, Lai H, Sun H, Chen Q (2017) Immunization of Zika virus envelope protein domain III induces specific and neutralizing immune responses against Zika virus. Vaccine 35:4287–4294. https://doi.org/10.1016/j.vaccine.2017.04.052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Zhang S et al (2016) Neutralization mechanism of a highly potent antibody against Zika virus. Nat Commun 7:13679. https://doi.org/10.1038/ncomms13679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Dai L et al (2016) Structures of the Zika Virus envelope protein and its complex with a Flavivirus broadly protective antibody. Cell Host Microbe 19:696–704. https://doi.org/10.1016/j.chom.2016.04.013

    Article  PubMed  CAS  Google Scholar 

  93. Stettler K et al (2016) Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353:823–826. https://doi.org/10.1126/science.aaf8505

    Article  PubMed  CAS  Google Scholar 

  94. Sapparapu G et al (2016) Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature. https://doi.org/10.1038/nature20564

Download references

Acknowledgements

This work was supported by the Florida Department of Health, Biomedical Research Program (JKY, CQN) and NIAID 1R21AI130561-01A1 (CQN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuong Q. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voigt, A., Semenova, T., Yamamoto, J., Etienne, V., Nguyen, C.Q. (2018). Therapeutic Antibody Discovery in Infectious Diseases Using Single-Cell Analysis. In: Gu, J., Wang, X. (eds) Single Cell Biomedicine. Advances in Experimental Medicine and Biology, vol 1068. Springer, Singapore. https://doi.org/10.1007/978-981-13-0502-3_8

Download citation

Publish with us

Policies and ethics