Skip to main content

Nanointerventions for Gene Therapy

  • Chapter
  • First Online:
  • 1231 Accesses

Abstract

Selective silencing of an over-expressed gene or constitutively expressing an under-expressed gene represents an effective strategy to treat diseases at a molecular level. Reprogramming the gene expression has also been found to be an attractive option for regeneration of tissues and organs. However, the potential of gene therapy remains underutilized. This is due to the absence of a mechanism to deliver the oligonucleotide into the target site with high precision and efficiency without compromising its stability. The recent developments witnessed in the realm of nanotechnology have revived interest in gene therapy strategies as the use of nano-dimensional carriers can overcome many of the current limitations. Though viruses were the first nanostructured systems to be explored for gene therapy applications, there has been considerable progress made in the development of non-viral delivery systems for gene therapy. This chapter provides an overview of the advances made in the field of gene delivery and various nanostructured delivery systems that have been reported for therapeutic applications with an emphasis on non-viral vectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mhashilkar A, Chada S, Roth JA, Ramesh R (2001) Gene therapy. Therapeutic approaches and implications. 19:279–297

    CAS  Google Scholar 

  2. Cevher E, Sezer A, Çağlar E (2012) Gene delivery systems: recent progress in viral and non-viral therapy. Recent Advances in Novel Drug Carrier Systems:437–470. https://doi.org/10.5772/53392

  3. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics 4:346–358. https://doi.org/10.1038/nrg1066

    Article  PubMed  CAS  Google Scholar 

  4. Mastrobattista E, van der Aa MAEM, Hennink WE, Crommelin DJA (2006) Artificial viruses: a nanotechnological approach to gene delivery. Nature Reviews Drug Discovery 5:115–121. https://doi.org/10.1038/nrd1960

    Article  PubMed  Google Scholar 

  5. Kafshdooz T, Kafshdooz L, Akbarzadeh A et al (2014) Applications of nanoparticle systems in gene delivery and gene therapy. Artif Cells Nanomed Biotechnol 1401:1–7. https://doi.org/10.3109/21691401.2014.971805

    Article  CAS  Google Scholar 

  6. Dizaj S, Jafari S, Khosroushahi A (2014) A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Research Letters 9:252. https://doi.org/10.1186/1556-276X-9-252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gary DJ, Puri N, Won YY (2007) Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. Journal of Controlled Release 121:64–73. https://doi.org/10.1016/j.jconrel.2007.05.021

    Article  PubMed  CAS  Google Scholar 

  8. Shim MS, Kwon YJ (2012) Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Advanced Drug Delivery Reviews 64:1046–1059. https://doi.org/10.1016/j.addr.2012.01.018

    Article  PubMed  CAS  Google Scholar 

  9. Chen Q, Osada K, Ge Z et al (2017) Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting. Biomaterials 113:253–265. https://doi.org/10.1016/j.biomaterials.2016.10.042

    Article  PubMed  CAS  Google Scholar 

  10. Vijayanathan V, Thomas T, Thomas TJ (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41:14085–14094. https://doi.org/10.1021/bi0203987

    Article  PubMed  CAS  Google Scholar 

  11. Pouton CW, Pouton CW, Seymour LW, Seymour LW (2001) Key issues in non-viral gene delivery. Advanced drug delivery reviews 46:187–203. https://doi.org/10.1016/S0169-409X(98)00048-9

    Article  PubMed  CAS  Google Scholar 

  12. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Medicine 7:33–40. https://doi.org/10.1038/83324

    Article  PubMed  CAS  Google Scholar 

  13. Tolstoshev P (1993) Further © 1993:1993

    Google Scholar 

  14. Robbins PD, Tahara H, Ghivizzani SC (1998) Viral vectors for gene therapy. Trends in Biotechnology 16:35–40. https://doi.org/10.1016/S0167-7799(97)01137-2

    Article  PubMed  CAS  Google Scholar 

  15. Valdmanis PN, Kay MA (2017) Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Human Gene Therapy 28:361–372. https://doi.org/10.1089/hum.2016.171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Scientists Try to Edit Gene Inside Live Patient, May Help Cure Diseases Via DNA Change – News18. http://www.news18.com/news/india/scientists-try-to-edit-gene-inside-live-patient-may-help-cure-diseases-via-dna-change-1578955.html. Accessed 23 Nov 2017

  17. Merkel SF, Andrews AM, Lutton EM et al (2017) Trafficking of adeno-associated virus vectors across a model of the blood–brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. Journal of Neurochemistry 140:216–230. https://doi.org/10.1111/jnc.13861

    Article  PubMed  CAS  Google Scholar 

  18. Wang K, Kievit FM, Zhang M (2016) Nanoparticles for cancer gene therapy: recent advances, challenges, and strategies. Pharmacological Research 114:56–66. https://doi.org/10.1016/j.phrs.2016.10.016

    Article  PubMed  CAS  Google Scholar 

  19. Gao X, Kim K-S, Liu D (2007) Nonviral gene delivery: what we know and what is next. The AAPS Journal 9:E92–E104. https://doi.org/10.1208/aapsj0901009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang S, Zhao B, Jiang H et al (2007) Cationic lipids and polymers mediated vectors for delivery of siRNA. Journal of Controlled Release 123:1–10. https://doi.org/10.1016/j.jconrel.2007.07.016

    Article  PubMed  CAS  Google Scholar 

  21. Kostarelos K, Miller AD (2005) Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chemical Society Reviews 34:970. https://doi.org/10.1039/b307062j

    Article  PubMed  CAS  Google Scholar 

  22. Bhavsar D, Subramanian K, Sethuraman S, Maheswari Krishnan U (2012) Translational gene therapy solutions using liposomal carriers prospects challenges.pdf. Current Gene Therapy 12:315–332

    Article  CAS  Google Scholar 

  23. Lv H, Zhang S, Wang B et al (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release 114:100–109. https://doi.org/10.1016/j.jconrel.2006.04.014

    Article  PubMed  CAS  Google Scholar 

  24. Boakye CHA, Patel K, Doddapaneni R et al (2017) Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment. Journal of Controlled Release 246:120–132. https://doi.org/10.1016/j.jconrel.2016.05.017

    Article  PubMed  CAS  Google Scholar 

  25. Bhavsar D, Subramanian K, Sethuraman S, Krishnan UM (2017) “Nano–in–nano” hybrid liposomes increase target specificity and gene silencing efficiency in breast cancer induced SCID mice. European Journal of Pharmaceutics and Biopharmaceutics 119:96–106. https://doi.org/10.1016/j.ejpb.2017.06.006

    Article  PubMed  CAS  Google Scholar 

  26. Huang X, Schwind S, Yu B et al (2013) Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clinical Cancer Research 19:2355–2367. https://doi.org/10.1158/1078-0432.CCR-12-3191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Suh MS, Shim G, Lee HY et al (2009) Anionic amino acid-derived cationic lipid for siRNA delivery. Journal of Controlled Release 140:268–276. https://doi.org/10.1016/j.jconrel.2009.06.017

    Article  PubMed  CAS  Google Scholar 

  28. Lin WJ, Lee WC, Shieh MJ (2017) Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydrate Polymers 155:101–108. https://doi.org/10.1016/j.carbpol.2016.08.021

    Article  PubMed  CAS  Google Scholar 

  29. Ewe A, Panchal O, Pinnapireddy SR et al (2017) Liposome-polyethylenimine complexes (DPPC-PEI lipopolyplexes) for therapeutic siRNA delivery in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine 13:209–218. https://doi.org/10.1016/j.nano.2016.08.005

    Article  CAS  Google Scholar 

  30. del Pozo-Rodríguez A, Solinís MÁ, Rodríguez-Gascón A (2016) Applications of lipid nanoparticles in gene therapy. European Journal of Pharmaceutics and Biopharmaceutics 109:184–193. https://doi.org/10.1016/j.ejpb.2016.10.016

    Article  PubMed  CAS  Google Scholar 

  31. Botto C, Mauro N, Amore E et al (2017) Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. International Journal of Pharmaceutics 516:334–341. https://doi.org/10.1016/j.ijpharm.2016.11.052

    Article  PubMed  CAS  Google Scholar 

  32. Apaolaza PS, Del Pozo-Rodríguez A, Torrecilla J et al (2015) Solid lipid nanoparticle-based vectors intended for the treatment of X-linked juvenile retinoschisis by gene therapy: in vivo approaches in Rs1h-deficient mouse model. Journal of Controlled Release 217:273–283. https://doi.org/10.1016/j.jconrel.2015.09.033

    Article  PubMed  CAS  Google Scholar 

  33. Apaolaza PS, del Pozo-Rodríguez A, Solinís MA et al (2016) Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials 90:40–49. https://doi.org/10.1016/j.biomaterials.2016.03.004

    Article  PubMed  CAS  Google Scholar 

  34. CHOI S (2008) Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. European Journal of Pharmaceutics and Biopharmaceutics 68:545–554. https://doi.org/10.1016/j.ejpb.2007.07.011

    Article  PubMed  CAS  Google Scholar 

  35. Ma K, Fu D, Yu D et al (2017) Targeted delivery of in situ PCR-amplified sleeping beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells. Biomaterials 121:55–63. https://doi.org/10.1016/j.biomaterials.2016.12.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ahmed T, Kamel AO, Wettig SD (2016) Interactions between DNA and gemini surfactant: impact on gene therapy: part II. Nanomedicine 11:403–420. https://doi.org/10.2217/nnm.15.204

    Article  PubMed  CAS  Google Scholar 

  37. Fisicaro E, Compari C, Bacciottini F et al (2017) Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles. Journal of Colloid and Interface Science 487:182–191. https://doi.org/10.1016/j.jcis.2016.10.032

    Article  PubMed  CAS  Google Scholar 

  38. Köping-Höggård M, Tubulekas I, Guan H et al (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene therapy 8:1108–1121. https://doi.org/10.1038/sj.gt.3301492

    Article  PubMed  Google Scholar 

  39. Huang FW, Wang HY, Li C et al (2010) PEGylated PEI-based biodegradable polymers as non-viral gene vectors. Acta Biomaterialia 6:4285–4295. https://doi.org/10.1016/j.actbio.2010.06.016

    Article  PubMed  CAS  Google Scholar 

  40. Cheraghi R, Alipour M, Nazari M, Hosseinkhani S (2017) Optimization of conditions for gene delivery system based on PEI. 4:8–16. https://doi.org/10.22038/nmj.2017.8047

    Article  CAS  Google Scholar 

  41. Peng SF, Hsu HK, Lin CC et al (2017) Novel PEI/poly-γ-glutamic acid nanoparticles for high efficient siRNA and plasmid DNA co-delivery. Molecules 22:1–16. https://doi.org/10.3390/molecules22010086

    Article  CAS  Google Scholar 

  42. Ewe A, Przybylski S, Burkhardt J et al (2016) A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo. Journal of Controlled Release 230:13–25. https://doi.org/10.1016/j.jconrel.2016.03.034

    Article  PubMed  CAS  Google Scholar 

  43. Liang K, Bae KH, Lee F et al (2016) Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery. Journal of Controlled Release 226:205–216. https://doi.org/10.1016/j.jconrel.2016.02.004

    Article  PubMed  CAS  Google Scholar 

  44. Mangraviti A, Tzeng SY, Kozielski KL et al (2015) Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in Vivo. ACS Nano 9:1236–1249. https://doi.org/10.1021/nn504905q

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lai TC, Kataoka K, Kwon GS (2011) Pluronic-based cationic block copolymer for forming pDNA polyplexes with enhanced cellular uptake and improved transfection efficiency. Biomaterials 32:4594–4603. https://doi.org/10.1016/j.biomaterials.2011.02.065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lai TC, Kataoka K, Kwon GS (2012) Bioreducible polyether-based pDNA ternary polyplexes: balancing particle stability and transfection efficiency. Colloids and Surfaces B: Biointerfaces 99:27–37. https://doi.org/10.1016/j.colsurfb.2011.09.026

    Article  PubMed  CAS  Google Scholar 

  47. Hayakawa K, Uchida S, Ogata T et al (2015) Intrathecal injection of a therapeutic gene-containing polyplex to treat spinal cord injury. Journal of Controlled Release 197:1–9. https://doi.org/10.1016/j.jconrel.2014.10.027

    Article  PubMed  CAS  Google Scholar 

  48. Baba M, Itaka K, Kondo K et al (2015) Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. Journal of Controlled Release 201:41–48. https://doi.org/10.1016/j.jconrel.2015.01.017

    Article  PubMed  CAS  Google Scholar 

  49. Li J, Chen Q, Zha Z et al (2015) Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery. Journal of Controlled Release 209:77–87. https://doi.org/10.1016/j.jconrel.2015.04.024

    Article  PubMed  CAS  Google Scholar 

  50. Guang Liu W, De Yao K (2002) Chitosan and its derivatives—a promising non-viral vector for gene transfection. Journal of Controlled Release 83:1–11. doi: https://doi.org/10.1016/S0168-3659(02)00144-X

  51. Sandri G, Motta S, Bonferoni MC et al (2017) Chitosan-coupled solid lipid nanoparticles: tuning nanostructure and mucoadhesion. European Journal of Pharmaceutics and Biopharmaceutics 110:13–18. https://doi.org/10.1016/j.ejpb.2016.10.010

    Article  PubMed  CAS  Google Scholar 

  52. Mansouri S, Cuie Y, Winnik F et al (2006) Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27:2060–2065. https://doi.org/10.1016/j.biomaterials.2005.09.020

    Article  PubMed  CAS  Google Scholar 

  53. Mansouri S, Lavigne P, Corsi K et al (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. European Journal of Pharmaceutics and Biopharmaceutics 57:1–8. https://doi.org/10.1016/S0939-6411(03)00155-3

    Article  PubMed  CAS  Google Scholar 

  54. Posadas I, Monteagudo S, Ceña V (2016) Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine 11:833–849. https://doi.org/10.2217/nnm.16.15

    Article  PubMed  CAS  Google Scholar 

  55. Hsueh YS, Subramaniam S, Tseng YC et al (2017) In vitro and in vivo assessment of chitosan modified urocanic acid as gene carrier. Materials Science and Engineering C 70:599–606. https://doi.org/10.1016/j.msec.2016.09.024

    Article  PubMed  CAS  Google Scholar 

  56. Amreddy N, Babu A, Muralidharan R et al (2017) Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. Topics in Current Chemistry 375:1–23. https://doi.org/10.1007/s41061-017-0128-5

    Article  CAS  Google Scholar 

  57. Lee J, Jeong EJ, Lee YK et al (2016) Optical imaging and gene therapy with neuroblastoma-targeting polymeric nanoparticles for potential theranostic applications. Small 12:1201–1211. https://doi.org/10.1002/smll.201501913

    Article  PubMed  CAS  Google Scholar 

  58. Amjad MW, Kesharwani P, Mohd Amin MCI, Iyer AK (2017) Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Progress in Polymer Science 64:154–181. https://doi.org/10.1016/j.progpolymsci.2016.09.008

    Article  CAS  Google Scholar 

  59. Chaplot SP, Rupenthal ID (2014) Dendrimers for gene delivery – a potential approach for ocular therapy? Journal of Pharmacy and Pharmacology 66:542–556. https://doi.org/10.1111/jphp.12104

    Article  PubMed  CAS  Google Scholar 

  60. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Advanced Drug Delivery Reviews 57:2177–2202. https://doi.org/10.1016/j.addr.2005.09.017

    Article  PubMed  CAS  Google Scholar 

  61. Palmerston Mendes L, Pan J, Torchilin V (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22:1401. https://doi.org/10.3390/molecules22091401

    Article  CAS  Google Scholar 

  62. Nam JP, Nam K, Jung S et al (2015) Evaluation of dendrimer type bio-reducible polymer as a siRNA delivery carrier for cancer therapy. Journal of Controlled Release 209:179–185. https://doi.org/10.1016/j.jconrel.2015.04.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Askarian S, Abnous K, Ayatollahi S et al (2017) PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydrate Polymers 157:929–937. https://doi.org/10.1016/j.carbpol.2016.10.030

    Article  PubMed  CAS  Google Scholar 

  64. Ke W, Shao K, Huang R et al (2009) Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30:6976–6985. https://doi.org/10.1016/j.biomaterials.2009.08.049

    Article  PubMed  CAS  Google Scholar 

  65. Waite CL, Sparks SM, Uhrich KE, Roth CM (2009) Acetylation of PAMAM dendrimers for cellular delivery of siRNA. BMC Biotechnology 9:38. https://doi.org/10.1186/1472-6750-9-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Taratula O, Garbuzenko OB, Kirkpatrick P et al (2009) Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. Journal of Controlled Release 140:284–293. https://doi.org/10.1016/j.jconrel.2009.06.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kim C, Hong JH (2009) Carbosilane and carbosiloxane dendrimers. Molecules 14:3719–3730. https://doi.org/10.3390/molecules14093719

    Article  PubMed  CAS  Google Scholar 

  68. de las Cuevas N, Garcia-Gallego S, Rasines B et al (2012) In vitro studies of water-stable cationic Carbosilane dendrimers as delivery vehicles for gene therapy against HIV and Hepatocarcinoma. Current Medicinal Chemistry 19:5052–5061. https://doi.org/10.2174/0929867311209025052

    Article  PubMed  Google Scholar 

  69. Wu J, Huang W, He Z (2013) Dendrimers as carriers for siRNA delivery and gene silencing: a review. The Scientific World Journal. https://doi.org/10.1155/2013/630654

  70. Merkel OM (2010) Of molecular structure on biological activity. Plasmid 20:1799–1806. https://doi.org/10.1021/bc900243r.Triazine

    Article  Google Scholar 

  71. Santos SS, Gonzaga RV, Silva JV, Savino DF, Prieto D, Shikay JM, Silva RS, Paulo LHA, Ferreira EI, Giarolla J (2017) Peptide dendrimers: drug/gene delivery and other approaches. Can J Chem 95(9):907–916. https://doi.org/10.1139/cjc-2017-0242

  72. Zhou X, Zheng Q, Wang C et al (2016) Star-shaped amphiphilic Hyperbranched polyglycerol conjugated with dendritic poly(l -lysine) for the codelivery of docetaxel and MMP-9 siRNA in cancer therapy. ACS Applied Materials and Interfaces 8:12609–12619. https://doi.org/10.1021/acsami.6b01611

    Article  PubMed  CAS  Google Scholar 

  73. Koppers-Lalic D, Hogenboom MM, Middeldorp JM, Pegtel DM (2013) Virus-modified exosomes for targeted RNA delivery; a new approach in nanomedicine. Advanced Drug Delivery Reviews 65:348–356. https://doi.org/10.1016/j.addr.2012.07.006

    Article  PubMed  CAS  Google Scholar 

  74. Lee Y, El Andaloussi S, Wood MJA (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics 21:125–134. https://doi.org/10.1093/hmg/dds317

    Article  CAS  Google Scholar 

  75. Tan A, Rajadas J, Seifalian AM (2013) Exosomes as nano-theranostic delivery platforms for gene therapy. Advanced Drug Delivery Reviews 65:357–367. https://doi.org/10.1016/j.addr.2012.06.014

    Article  PubMed  CAS  Google Scholar 

  76. Van den Boorn JG, Daßler J, Coch C et al (2013) Exosomes as nucleic acid nanocarriers. Advanced Drug Delivery Reviews 65:331–335. https://doi.org/10.1016/j.addr.2012.06.011

    Article  PubMed  CAS  Google Scholar 

  77. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proceedings of the National Academy of Sciences 107:6328–6333. https://doi.org/10.1073/pnas.0914843107

    Article  Google Scholar 

  78. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta – General Subjects 1820:940–948. https://doi.org/10.1016/j.bbagen.2012.03.017

    Article  CAS  Google Scholar 

  79. Maguire CA, Balaj L, Sivaraman S et al (2012) Microvesicle-associated AAV vector as a novel gene delivery system. Molecular Therapy 20:960–971. https://doi.org/10.1038/mt.2011.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. EL Andaloussi S, Lakhal S, Mäger I, Wood MJA (2013) Exosomes for targeted siRNA delivery across biological barriers. Advanced Drug Delivery Reviews 65:391–397. https://doi.org/10.1016/j.addr.2012.08.008

    Article  PubMed  CAS  Google Scholar 

  81. Daemen T, De Mare A, Bungener L et al (2005) Virosomes for antigen and DNA delivery. Advanced Drug Delivery Reviews 57:451–463. https://doi.org/10.1016/j.addr.2004.09.005

    Article  PubMed  CAS  Google Scholar 

  82. Mohammadzadeh Y, Gholami S, Rasouli N et al (2016) Introduction of cationic virosome derived from vesicular stomatitis virus as a novel gene delivery system for sf9 cells. Journal of liposome research 2104:1–7. https://doi.org/10.3109/08982104.2016.1144205

    Article  CAS  Google Scholar 

  83. de Jonge J, Leenhouts JM, Holtrop M, et al (2007) Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. The Biochemical journal 405:41–49. doi: https://doi.org/10.1042/BJ20061756

  84. de Jonge J, Holtrop M, Wilschut J, Huckriede A (2006) Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs. Gene Therapy 13:400–411. https://doi.org/10.1038/sj.gt.3302673

    Article  PubMed  CAS  Google Scholar 

  85. Huckriede A, De Jonge J, Holtrop M, Wilschut J (2007) Cellular delivery of siRNA mediated by fusion-active virosomes. Journal of Liposome Research 17:39–47. https://doi.org/10.1080/08982100601186516

    Article  PubMed  CAS  Google Scholar 

  86. Patel S, Patel M, Patel N (2010) Need, development and application of virosomal system in medicine. International Journal of Pharmaceutical Sciences and Nanotechnology 3:1065–1074

    CAS  Google Scholar 

  87. Cusi MG (2006) Applications of influenza virosomes as a delivery system. Human vaccines 2:1–7. https://doi.org/10.4161/hv.2.1.2494

    Article  PubMed  CAS  Google Scholar 

  88. Kaneda Y, Nakajima T, Nishikawa T et al (2002) Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Molecular therapy : the journal of the American Society of Gene Therapy 6:219–226. https://doi.org/10.1006/mthe.2002.0647

    Article  CAS  Google Scholar 

  89. Kaneda Y (2000) Virosomes: evolution of the liposome as a targeted drug delivery system. Advanced Drug Delivery Reviews 43:197–205. https://doi.org/10.1016/S0169-409X(00)00069-7

    Article  PubMed  CAS  Google Scholar 

  90. Ramani K, Bora RS, Kumar M et al (1997) Novel gene delivery to liver cells using engineered virosomes. FEBS Letters 404:164–168. https://doi.org/10.1016/S0014-5793(97)00120-8

    Article  PubMed  CAS  Google Scholar 

  91. Maitra A (2005) Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Review of Molecular Diagnostics 5:893–905. https://doi.org/10.1586/14737159.5.6.893

    Article  PubMed  CAS  Google Scholar 

  92. Lee D, Ahn G, Kumta PN (2013) Nano-sized calcium phosphate (CaP) carriers for non-viral gene/drug delivery. Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering 177:203–236. https://doi.org/10.1002/9781118644591.ch6

    Article  Google Scholar 

  93. Shekhar S, Roy A, Hong D, Kumta PN (2016) Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles—efficient calcium phosphate based non-viral gene delivery systems. Materials Science and Engineering C 69:486–495. https://doi.org/10.1016/j.msec.2016.06.076

    Article  PubMed  CAS  Google Scholar 

  94. Olton DYE, Close JM, Sfeir CS, Kumta s PN (2011) Intracellular trafficking pathways involved in the gene transfer of nano-structured calcium phosphate-DNA particles. Biomaterials 32:7662–7670. https://doi.org/10.1016/j.biomaterials.2011.01.043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Olton D, Li J, Wilson ME et al (2007) Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials 28:1267–1279. https://doi.org/10.1016/j.biomaterials.2006.10.026

    Article  PubMed  CAS  Google Scholar 

  96. Giger EV, Puigmartí-Luis J, Schlatter R et al (2011) Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. Journal of Controlled Release 150:87–93. https://doi.org/10.1016/j.jconrel.2010.11.012

    Article  PubMed  CAS  Google Scholar 

  97. Murugan B, Narashimhan Ramana L, Gandhi S et al (2013) Engineered chemoswitchable mesoporous silica for tumor-specific cytotoxicity. Journal of Materials Chemistry B 1:3494. https://doi.org/10.1039/c3tb20415d

    Article  CAS  Google Scholar 

  98. Radu DR, Lai CY, Jeftinija K et al (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. Journal of the American Chemical Society 126:13216–13217. https://doi.org/10.1021/ja046275m

    Article  PubMed  CAS  Google Scholar 

  99. Wu M, Meng Q, Chen Y et al (2016) Large pore-sized hollow mesoporous Organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Advanced Materials 28:1963–1969. https://doi.org/10.1002/adma.201505524

    Article  PubMed  CAS  Google Scholar 

  100. Bharali DJ, Klejbor I, Stachowiak EK et al (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proceedings of the National Academy of Sciences of the United States of America 102:11539–11544. https://doi.org/10.1073/pnas.0504926102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Babaei M, Eshghi H, Abnous K et al (2017) Promising gene delivery system based on polyethylenimine-modified silica nanoparticles. Cancer Gene Therapy 24:156–164. https://doi.org/10.1038/cgt.2016.73

    Article  PubMed  CAS  Google Scholar 

  102. Kim MH, Na HK, Kim YK et al (2011) Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5:3568–3576. https://doi.org/10.1021/nn103130q

    Article  PubMed  CAS  Google Scholar 

  103. DeLong RK, Reynolds CM, Malcolm Y et al (2010) Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnology, Science and Applications 3:53–63. https://doi.org/10.2147/NSA.S8984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Mendes R, Fernandes AR, Baptista PV (2017) Gold nanoparticle approach to the selective delivery of gene silencing in cancer-the case for combined delivery? Genes. https://doi.org/10.3390/genes8030094

  105. Irradiation NL, Li C, Xia F et al (2017) Dendrimer-Modified Gold Nanorods as High Efficient Controlled Gene Delivery Release System under. Nano Biomed Eng 9:82–95. https://doi.org/10.5101/nbe.v9i1.p82-95.1

    Article  Google Scholar 

  106. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of Controlled Release 149:65–71. https://doi.org/10.1016/j.jconrel.2009.12.006

    Article  PubMed  CAS  Google Scholar 

  107. Perche F, Yi Y, Hespel L et al (2016) Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity. Biomaterials 90:62–71. https://doi.org/10.1016/j.biomaterials.2016.02.027

    Article  PubMed  CAS  Google Scholar 

  108. Guo S (2011) Enhanced gene delivery and siRNA silencing by gold nanoparticles Coated with charge-reversal polyelectrolyte. ACS Nano 4:5505–5511. https://doi.org/10.1021/nn101638u.Enhanced

    Article  Google Scholar 

  109. Gold AA, Ghosh PS, Kim C et al (2008) Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of. 2:2213–2218

    Google Scholar 

  110. Zaimy MA, Jebali A, Bazrafshan B et al (2016) Coinhibition of overexpressed genes in acute myeloid leukemia subtype M2 by gold nanoparticles functionalized with five antisense oligonucleotides and one anti-CD33(+)/CD34(+) aptamer. Cancer Gene Therapy 23:315

    Article  CAS  Google Scholar 

  111. Shan Y, Luo T, Peng C et al (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33:3025–3035. https://doi.org/10.1016/j.biomaterials.2011.12.045

    Article  PubMed  CAS  Google Scholar 

  112. Pickard MR, Adams CF, Chari DM (2017) Magnetic nanoparticle-mediated gene delivery to two-and three-dimensional neural stem cell cultures: magnet-assisted transfection and multifection approaches to enhance outcomes. Current Protocols in Stem Cell Biology 2017:2D.19.1–2D.19.16. https://doi.org/10.1002/cpsc.23

    Article  Google Scholar 

  113. Wang R, Hu Y, Zhao N, Xu FJ (2016) Well-defined peapod-like magnetic nanoparticles and their controlled modification for effective imaging guided gene therapy. ACS Applied Materials and Interfaces 8:11298–11308. https://doi.org/10.1021/acsami.6b01697

    Article  PubMed  CAS  Google Scholar 

  114. Zhang TY, Wu JH, Xu QH et al (2017) Design of magnetic gene complexes as effective and serum resistant gene delivery systems for mesenchymal stem cells. International Journal of Pharmaceutics 520:1–13. https://doi.org/10.1016/j.ijpharm.2017.01.041

    Article  PubMed  CAS  Google Scholar 

  115. Kim MC, Lin MM, Sohn Y et al (2017) Polyethyleneimine-associated polycaprolactone—superparamagnetic iron oxide nanoparticles as a gene delivery vector. Journal of Biomedical Materials Research – Part B Applied Biomaterials 105:145–154. https://doi.org/10.1002/jbm.b.33519

    Article  PubMed  CAS  Google Scholar 

  116. Majidi S, Zeinali Sehrig F, Samiei M et al (2015) Magnetic nanoparticles: applications in gene delivery and gene therapy. Artificial Cells, Nanomedicine, and Biotechnology:1–8. https://doi.org/10.3109/21691401.2015.1014093

  117. Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Therapy 13:283–287. https://doi.org/10.1038/sj.gt.3302720

    Article  PubMed  CAS  Google Scholar 

  118. Yokoyama M (2002) Gene delivery using temperature-responsive polymeric carriers. Drug Discovery Today 7:426–432. https://doi.org/10.1016/S1359-6446(02)02216-X

    Article  PubMed  CAS  Google Scholar 

  119. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery 13:813–827. https://doi.org/10.1038/nrd4333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Chiper M, Tounsi N, Kole R et al (2017) Self-aggregating 1.8 kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon-skipping oligonucleotides. Journal of Controlled Release 246:60–70. https://doi.org/10.1016/j.jconrel.2016.12.005

    Article  PubMed  CAS  Google Scholar 

  121. Xiang B, Jia XL, Qi JL et al (2017) Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. International Journal of Nanomedicine 12:2385–2405. https://doi.org/10.2147/IJN.S129574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zhang S-K, Song J-W, Li S-B, et al (2017) Design of pH-sensitive peptides from natural antimicrobial peptides for enhancing polyethylenimine-mediated gene transfection. The Journal of Gene Medicine 19:e2955–n/a. doi: https://doi.org/10.1002/jgm.2955

  123. Gu J, Al-Bayati K, Ho EA (2017) Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Delivery and Translational Research 7:497–506. https://doi.org/10.1007/s13346-017-0368-5

    Article  PubMed  CAS  Google Scholar 

  124. Cheng Y, Yumul RC, Pun SH (2016) Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angewandte Chemie – International Edition 55:12013–12017. https://doi.org/10.1002/anie.201605958

    Article  PubMed  CAS  Google Scholar 

  125. Lee S, Yang SC, Heffernan MJ et al (2007) Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjugate Chemistry 18:4–7. https://doi.org/10.1021/bc060259s

    Article  PubMed  CAS  Google Scholar 

  126. Wang Y, Chang B, Yang W (2012) pH-sensitive Polyketal nanoparticles for drug delivery. Journal of Nanoscience and Nanotechnology 12:8266–8275. https://doi.org/10.1166/jnn.2012.6677

    Article  PubMed  CAS  Google Scholar 

  127. Sohn Y-D (2015) NIH Public Access. 27:320–331. https://doi.org/10.1002/nbm.3066.Non-invasive

    Article  Google Scholar 

  128. Mcmahon T, Zijl PCM Van, Gilad AA (2015) NIH Public Access. 27:320–331. doi: https://doi.org/10.1002/nbm.3066.Non-invasive

  129. Kang L, Fan B, Sun P et al (2016) An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome. Acta Biomaterialia 44:341–354. https://doi.org/10.1016/j.actbio.2016.08.029

    Article  PubMed  CAS  Google Scholar 

  130. Song SJ, Lee S, Lee Y, Choi JS (2016) Enzyme-responsive destabilization of stabilized plasmid-lipid nanoparticles as an efficient gene delivery. European Journal of Pharmaceutical Sciences 91:20–30. https://doi.org/10.1016/j.ejps.2016.05.024

    Article  PubMed  CAS  Google Scholar 

  131. Rozema DB, Blokhin AV, Wakefield DH et al (2015) Protease-triggered siRNA delivery vehicles. Journal of Controlled Release 209:57–66. https://doi.org/10.1016/j.jconrel.2015.04.012

    Article  PubMed  CAS  Google Scholar 

  132. Wang DS, Panje C, Pysz MA et al (2012) Cationic versus neutral microbubbles for gene delivery in Cancer 1. Radiology 264:721–732. https://doi.org/10.1148/radiol.12112368/-/DC1

    Article  PubMed  PubMed Central  Google Scholar 

  133. Warburton DER, Nicol CW, Bredin SSD (2006) Health benefits of physical activity: the evidence. CMAJ : Canadian Medical Association journal = journal de l’Association medicale canadienne 174:801–809. https://doi.org/10.1503/cmaj.051351

    Article  PubMed  Google Scholar 

  134. Chang E, Ting C, Yeh C (2014) ġġ Ultrasound-mediated gene delivery by using folic. 1049–1052

    Google Scholar 

  135. Negishi Y, Tsunoda Y, Hamano N et al (2013) Ultrasound-mediated gene delivery systems by AG73-modified bubble liposomes. Peptide Science 100:402–407. https://doi.org/10.1002/bip.22246

    Article  PubMed  CAS  Google Scholar 

  136. Cavalli R, Bisazza A, Trotta M et al (2012) New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. International Journal of Nanomedicine 7:3309–3318. https://doi.org/10.2147/IJN.S30912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Chumakova OV, Liopo AV, Andreev VG et al (2008) Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Letters 261:215–225. https://doi.org/10.1016/j.canlet.2007.11.023

    Article  PubMed  CAS  Google Scholar 

  138. Nande RP (2015) Investigation of ultrasound targeted microbubbles as a therapeutic gene delivery system for prostate cancer

    Google Scholar 

  139. Yin L (2015) NIH Public Access. 27:320–331. https://doi.org/10.1002/nbm.3066.Non-invasive

    Article  Google Scholar 

  140. Mathiesen I (1999) Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Therapy 6:508–514. https://doi.org/10.1038/sj.gt.3300847

    Article  PubMed  CAS  Google Scholar 

  141. Kawano T, Yamagata M, Takahashi H et al (2006) Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. Journal of Controlled Release 111:382–389. https://doi.org/10.1016/j.jconrel.2005.12.022

    Article  PubMed  CAS  Google Scholar 

  142. Somiari S, Glasspool-Malone J, Drabick JJ et al (2000) Theory and in vivo application of electroporative gene delivery. Molecular Therapy 2:178–187. https://doi.org/10.1006/mthe.2000.0124

    Article  PubMed  CAS  Google Scholar 

  143. Li Y, Wang H, Wang K et al (2017) Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. Small 13:1–9. https://doi.org/10.1002/smll.201602697

    Article  CAS  Google Scholar 

  144. Lee S, Son SJ, Song SJ, et al with Cathepsin-B cleavable oligopeptides for enhanced gene delivery. https://doi.org/10.3390/polym9060224

  145. Li Y, Hei M, Xu Y et al (2016) Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. International Journal of Pharmaceutics 511:689–702. https://doi.org/10.1016/j.ijpharm.2016.07.029

    Article  PubMed  CAS  Google Scholar 

  146. Fan B, Kang L, Chen L et al (2017) Systemic siRNA delivery with a dual pH-responsive and tumor-targeted nanovector for inhibiting tumor growth and spontaneous metastasis in orthotopic murine model of breast carcinoma. Theranostics 7:357–376. https://doi.org/10.7150/thno.16855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Niu S, Zhang LK, Zhang L et al (2017) Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics 7:344–356. https://doi.org/10.7150/thno.16562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Jiang Q, Zhang Y, Zhuo R, Jiang X (2016) A light and reduction dual sensitive supramolecular self-assembly gene delivery system based on poly(cyclodextrin) and disulfide-containing azobenzene-terminated branched polycations. J Mater Chem B 4:7731–7740. https://doi.org/10.1039/C6TB02248K

    Article  CAS  Google Scholar 

  149. Yang H, Chen Y, Chen Z et al (2017) Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater Sci 5:1001–1013. https://doi.org/10.1039/C7BM00043J

    Article  PubMed  CAS  Google Scholar 

  150. Pensado A, Diaz-Corrales FJ, De la Cerda B et al (2016) Span poly-L-arginine nanoparticles are efficient non-viral vectors for PRPF31 gene delivery: an approach of gene therapy to treat retinitis pigmentosa. Nanomedicine: Nanotechnology, Biology, and Medicine 12:2251–2260. https://doi.org/10.1016/j.nano.2016.06.007

    Article  CAS  Google Scholar 

  151. Hatakeyama H, Akita H, Kogure K et al (2007) Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Therapy 14:68–77. https://doi.org/10.1038/sj.gt.3302843

    Article  PubMed  CAS  Google Scholar 

  152. Kogure K, Akita H, Yamada Y, Harashima H (2008) Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Advanced Drug Delivery Reviews 60:559–571. https://doi.org/10.1016/j.addr.2007.10.007

    Article  PubMed  CAS  Google Scholar 

  153. Higashi T, Khalil IA, Maiti KK et al (2009) Novel lipidated sorbitol-based molecular transporters for non-viral gene delivery. Journal of Controlled Release 136:140–147. https://doi.org/10.1016/j.jconrel.2009.01.024

    Article  PubMed  CAS  Google Scholar 

  154. McCrudden CM, McBride JW, McCaffrey J et al (2017) Systemic RALA/iNOS nanoparticles: a potent gene therapy for metastatic breast cancer coupled as a biomarker of treatment. Molecular Therapy – Nucleic Acids 6:249–258. https://doi.org/10.1016/j.omtn.2016.12.010

    Article  PubMed  CAS  Google Scholar 

  155. Wan Y, Moyle PM, Gn PZ, Toth I (2017) Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine. https://doi.org/10.2217/nnm-2016-0354

  156. Meng Z, Luan L, Kang Z et al (2017) Histidine-enriched multifunctional peptide vectors with enhanced cellular uptake and endosomal escape for gene delivery. J Mater Chem B 5:74–84. https://doi.org/10.1039/C6TB02862D

    Article  CAS  Google Scholar 

  157. Avila LA, Aps LRMM, Ploscariu N et al (2016) Gene delivery and immunomodulatory effects of plasmid DNA associated with branched amphiphilic peptide capsules. Journal of Controlled Release 241:15–24. https://doi.org/10.1016/j.jconrel.2016.08.042

    Article  PubMed  CAS  Google Scholar 

  158. Hirst DJ, Lee TH, Kulkarni K et al (2016) The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. Biochimica et Biophysica Acta – Biomembranes 1858:1841–1849. https://doi.org/10.1016/j.bbamem.2016.05.004

    Article  CAS  Google Scholar 

  159. Yoo J, Lee DY, Gujrati V et al (2017) Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform. Journal of Controlled Release 246:142–154. https://doi.org/10.1016/j.jconrel.2016.04.040

    Article  PubMed  CAS  Google Scholar 

  160. Chuah JA, Matsugami A, Hayashi F, Numata K (2016) Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights. Biomacromolecules 17:3547–3557. https://doi.org/10.1021/acs.biomac.6b01056

    Article  PubMed  CAS  Google Scholar 

  161. Majidi A, Nikkhah M, Sadeghian F, Hosseinkhani S (2016) Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: imitation of a real cargo. European Journal of Pharmaceutics and Biopharmaceutics 107:191–204. https://doi.org/10.1016/j.ejpb.2016.06.017

    Article  PubMed  CAS  Google Scholar 

  162. Freire JM, Rego de Figueiredo I, Valle J et al (2017) siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. Journal of Controlled Release 245:127–136. https://doi.org/10.1016/j.jconrel.2016.11.027

    Article  PubMed  CAS  Google Scholar 

  163. Elzoghby AO (2013) Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. Journal of controlled release : official journal of the Controlled Release Society 1075—1091:172. https://doi.org/10.1016/j.jconrel.2013.09.019

    Article  CAS  Google Scholar 

  164. Hosseinkhani H, Tabata Y (2006) Self Assembly of DNA nanoparticles with Polycations for the delivery of genetic materials into cells. Journal of Nanoscience and Nanotechnology 6:2320–2328. https://doi.org/10.1166/jnn.2006.507

    Article  PubMed  CAS  Google Scholar 

  165. Abozeid SM, Hathout RM, Abou-Aisha K (2016) Silencing of the metastasis-linked gene, AEG-1, using siRNA-loaded cholamine surface-modified gelatin nanoparticles in the breast carcinoma cell line MCF-7. Colloids and Surfaces B: Biointerfaces 145:607–616. https://doi.org/10.1016/j.colsurfb.2016.05.066

    Article  PubMed  CAS  Google Scholar 

  166. Schmitt N (2008) In vivo studies. 129:72–84

    Google Scholar 

  167. Tirkey B, Bhushan B, Uday Kumar S, Gopinath P (2017) Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy. Materials Science and Engineering C 73:507–515. https://doi.org/10.1016/j.msec.2016.12.108

    Article  PubMed  CAS  Google Scholar 

  168. Zhang C, Zhang T, Jin S et al (2017) Virus-inspired self-assembled nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Applied Materials and Interfaces 9:4425–4432. https://doi.org/10.1021/acsami.6b11536

    Article  PubMed  CAS  Google Scholar 

  169. Taratula O, Salva R, Pandya I et al (2008) Multifunctional siRNA delivery system for cancer therapy. Nanotechnology 2:4–7

    Google Scholar 

  170. Liu M, Chen B, Xue Y et al (2011) Polyamidoamine-grafted multiwalled carbon nanotubes for gene delivery: synthesis, transfection and intracellular trafficking. Bioconjugate Chemistry 22:2237–2243. https://doi.org/10.1021/bc200189f

    Article  PubMed  CAS  Google Scholar 

  171. Cui D, Huang P, Zhang C et al (2011) Dendrimer-modified gold nanorods as efficient controlled gene delivery system under near-infrared light irradiation. Journal of Controlled Release 152:e137–e139. https://doi.org/10.1016/j.jconrel.2011.08.047

    Article  PubMed  CAS  Google Scholar 

  172. Kamei K, Mukai Y, Kojima H et al (2009) Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials 30:1809–1814. https://doi.org/10.1016/j.biomaterials.2008.12.015

    Article  PubMed  CAS  Google Scholar 

  173. Heun Y, Hildebrand S, Heidsieck A et al (2017) Targeting of magnetic nanoparticle-coated microbubbles to the vascular wall empowers site-specific lentiviral gene delivery in vivo. Theranostics 7:295–307. https://doi.org/10.7150/thno.16192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Matsui K, Sasaki Y, Komatsu T et al (2007) RNAi gene silencing using cerasome as a viral-size siRNA-carrier free from fusion and cross-linking. Bioorganic and Medicinal Chemistry Letters 17:3935–3938. https://doi.org/10.1016/j.bmcl.2007.04.097

    Article  PubMed  CAS  Google Scholar 

  175. Matsui K, Sando S, Sera T et al (2006) Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size. Journal of the American Chemical Society 128:3114–3115. https://doi.org/10.1021/ja058016i

    Article  PubMed  CAS  Google Scholar 

  176. Li W, Xin X, Jing S et al (2017) Organic metal complexes based on zoledronate–calcium: a potential pDNA delivery system. J Mater Chem B 5:1601–1610. https://doi.org/10.1039/C6TB03041F

    Article  CAS  Google Scholar 

  177. Rezaee M, Oskuee RK, Nassirli H, Malaekeh-Nikouei B (2016) Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. Journal of Controlled Release 236:1–14. https://doi.org/10.1016/j.jconrel.2016.06.023

    Article  PubMed  CAS  Google Scholar 

  178. Jin Y, Liu S, Yu B et al (2010) Targeted delivery of antisense oligodeoxynucleotide by transferrin conjugated pH-sensitive lipopolyplex nanoparticles: a novel oligonucleotide-based therapeutic strategy in acute myeloid leukemia. Molecular pharmaceutics 7:196–206. https://doi.org/10.1021/mp900205r

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Huang P, Zhao J, Wei C et al (2016) Erythrocyte membrane based cationic polymer-mcDNA complexes as an efficient gene delivery system. Biomaterials science 5:120–127. https://doi.org/10.1039/c6bm00638h

    Article  PubMed  CAS  Google Scholar 

  180. Yao X, Zhou N, Wan L et al (2014) Polyethyleneimine-coating enhances adenoviral transduction of mesenchymal stem cells. Biochemical and Biophysical Research Communications 447:383–387. https://doi.org/10.1016/j.bbrc.2014.03.142

    Article  PubMed  CAS  Google Scholar 

  181. McConnell KI, Rhudy J, Yokoi K et al (2014) Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles. Journal of Controlled Release 194:113–121. https://doi.org/10.1016/j.jconrel.2014.08.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Chorny M, Fishbein I, Tengood JE et al (2013) Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. FASEB Journal 27:2198–2206. https://doi.org/10.1096/fj.12-224659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Kreppel F, Kochanek S (2008) Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Molecular Therapy 16:16–29. https://doi.org/10.1038/sj.mt.6300321

    Article  PubMed  CAS  Google Scholar 

  184. Fisher KD, Stallwood Y, Green NK et al (2001) Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Therapy 8:341–348. https://doi.org/10.1038/sj.gt.3301389

    Article  PubMed  CAS  Google Scholar 

  185. Green NK, Herbert CW, Hale SJ et al (2004) Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Therapy 11:1256–1263. https://doi.org/10.1038/sj.gt.3302295

    Article  PubMed  CAS  Google Scholar 

  186. Morrison J, Briggs SS, Green N et al (2008) Virotherapy of ovarian cancer with polymer-cloaked adenovirus retargeted to the epidermal growth factor receptor. Molecular Therapy 16:244–251. https://doi.org/10.1038/sj.mt.6300363

    Article  PubMed  CAS  Google Scholar 

  187. Dash PR, Read ML, Fisher KD et al (2000) Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. Journal of Biological Chemistry 275:3793–3802. https://doi.org/10.1074/jbc.275.6.3793

    Article  PubMed  CAS  Google Scholar 

  188. Cho SK, Kwon YJ (2012) Simultaneous gene transduction and silencing using stimuli-responsive viral/nonviral chimeric nanoparticles. Biomaterials 33:3316–3323. https://doi.org/10.1016/j.biomaterials.2012.01.027

    Article  PubMed  CAS  Google Scholar 

  189. Trueck C, Zimmermann K, Mykhaylyk O et al (2012) Optimization of magnetic nanoparticle-assisted lentiviral gene transfer. Pharmaceutical Research 29:1255–1269. https://doi.org/10.1007/s11095-011-0660-x

    Article  PubMed  CAS  Google Scholar 

  190. Akin D, Sturgis J, Ragheb K et al (2007) Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nano 2:441–449

    Article  CAS  Google Scholar 

  191. Wang Y, You Z, Du J et al (2016) Self-assembled triangular DNA nanoparticles are an efficient system for gene delivery. Journal of Controlled Release 233:126–135. https://doi.org/10.1016/j.jconrel.2016.05.038

    Article  PubMed  CAS  Google Scholar 

  192. Ramos-Perez V, Cifuentes A, Coronas N et al (2013) Modification of carbon nanotubes for gene delivery vectors. Methods in molecular biology (Clifton, NJ) 1025:261–268. https://doi.org/10.1007/978-1-62703-462-3_20

    Article  CAS  Google Scholar 

  193. Pflueger I, Charrat C, Mellet CO et al (2016) Cyclodextrin-based facial amphiphiles: assessing the impact of the hydrophilic–lipophilic balance in the self-assembly, DNA complexation and gene delivery capabilities. Org Biomol Chem 14:10037–10049. https://doi.org/10.1039/C6OB01882C

    Article  PubMed  CAS  Google Scholar 

  194. Guo J, Russell EG, Darcy R et al (2017) Antibody-targeted Cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Molecular Pharmaceutics 14:940–952. https://doi.org/10.1021/acs.molpharmaceut.6b01150

    Article  PubMed  CAS  Google Scholar 

  195. Evans JC, Malhotra M, Fitzgerald KA et al (2017) Formulation and evaluation of Anisamide-targeted amphiphilic Cyclodextrin nanoparticles to promote therapeutic gene silencing in a 3D prostate cancer bone metastases model. Molecular Pharmaceutics 14:42–52. https://doi.org/10.1021/acs.molpharmaceut.6b00646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge funding towards development of novel gene delivery systems from DBT (BT/PR-11210/NNT/28/421/2008) (UMK), DST’s Indo-Russia collaborative programme (INT/RUS/RSF/P-10) (UMK & VA), Nanomission (SR/NM/PG-16/2007) (UMK) and SASTRA Deemed University (UMK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Uma Maheswari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uma Maheswari, K., Annenkov, V. (2018). Nanointerventions for Gene Therapy. In: Jayandharan, G. (eds) Gene and Cell Therapy: Biology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-0481-1_3

Download citation

Publish with us

Policies and ethics