Skip to main content

Introduction

  • Chapter
  • First Online:
  • 284 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Neural prostheses are electronic devices that can restore or substitute the partially damaged or profoundly impaired nervous system from neural diseases. Significant developments, from basic scientific discoveries to practical engineering technologies, have been achieved in many applications (Cogan in Annu Rev Biomed Eng 10:275–309, 2008 [1], Khanna in Implantable medical electronics: prosthetics, drug delivery, and health monitoring. Springer International Publishing, Cham, pp. 153–166, 2016 [2], Stieglitz et al. in IEEE Eng Med Biol Mag 24:58–65, 2005 [3], Prochazka et al. in J Physiol 533:99–109, 2001 [4]). These findings and research combined with medical approaches have led to success in the commercialization of neural prostheses, such as cochlear implants, deep brain stimulation (DBS), and artificial retinas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  2. V.K. Khanna, “Biomaterials for Implants,” in Implantable Medical Electronics: Prosthetics, Drug Delivery, and Health Monitoring (Springer International Publishing, Cham, 2016) pp. 153–166

    Google Scholar 

  3. T. Stieglitz, M. Schuetter, K.P. Koch, Implantable biomedical microsystems for neural prostheses. IEEE Eng. Med. Biol. Mag. 24, 58–65 (2005)

    Article  Google Scholar 

  4. A. Prochazka, V.K. Mushahwar, D.B. McCreery, Neural prostheses. J. Physiol. 533, 99–109 (2001)

    Article  Google Scholar 

  5. B.J. Gantz, B.F. Mccabe, R.S. Tyler, Use of multichannel cochlear implants in obstructed and obliterated cochleas. Otolaryngol.-Head Neck Surg. 98, 72–81 (1988)

    Article  Google Scholar 

  6. K.D. Brown, T.J. Balkany, Benefits of bilateral cochlear implantation: a review. Curr. Opin. Otolaryngol. Head Neck Surg. 15, 315–318 (2007)

    Article  Google Scholar 

  7. B.S. Wilson, C.C. Finley, D.T. Lawson, R.D. Wolford, D.K. Eddington, W.M. Rabinowitz, Better speech recognition with cochlear implants. Nature 352, 236–238 (1991)

    Article  ADS  Google Scholar 

  8. F.-G. Zeng, S.J. Rebscher, Q.-J. Fu, H. Chen, X. Sun, L. Yin et al., Development and evaluation of the Nurotron 26-electrode cochlear implant system. Hear. Res. 322, 188–199 (2015)

    Article  Google Scholar 

  9. D.S. Kern, R. Kumar, Deep brain stimulation. The Neurologist 13, 237–252 (2007)

    Article  Google Scholar 

  10. H.S. Mayberg, A.M. Lozano, V. Voon, H.E. McNeely, D. Seminowicz, C. Hamani et al., Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005)

    Article  Google Scholar 

  11. J.S. Perlmutter, J.W. Mink, Deep brain stimulation. Annu. Rev. Neurosci. 29, 229 (2006)

    Article  Google Scholar 

  12. M.S. Humayun, J.D. Dorn, L. da Cruz, G. Dagnelie, J.A. Sahel, P.E. Stanga et al., Interim results from the international trial of second sight’s visual prosthesis, Ophthalmology, 119 (2012)

    Article  Google Scholar 

  13. R.K. Shepherd, M.N. Shivdasani, D.A.X. Nayagam, C.E. Williams, P.J. Blamey, Visual prostheses for the blind. Trends Biotechnol. 31, 562–571 (2013)

    Article  Google Scholar 

  14. M. HajjHassan, V. Chodavarapu, S. Musallam, NeuroMEMS: neural probe microtechnologies. Sensors 8, 6704 (2008)

    Article  Google Scholar 

  15. L. Grand, A. Pongrácz, É. Vázsonyi, G. Márton, D. Gubán, R. Fiáth et al., A novel multisite silicon probe for high quality laminar neural recordings. Sens. Actuators, A 166, 14–21 (2011)

    Article  Google Scholar 

  16. G. Grigori, E.M. Jeffrey, A.L. William, J.G. Timothy, A carbon-fiber electrode array for long-term neural recording. J. Neural Eng. 10, 046016 (2013)

    Article  Google Scholar 

  17. J.W. Thomas, C.W. Michael, L.M. Janice, L.P. Rachel, U.E. Jeremiah, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 15, 48 (2004)

    Article  Google Scholar 

  18. K.C. Cheung, Implantable microscale neural interfaces. Biomed. Microdevice 9, 923–938 (2007)

    Article  Google Scholar 

  19. S. Herwik, S. Kisban, A.A.A. Aarts, K. Seidl, G. Girardeau, K. Benchenane et al., Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording. J. Micromech. Microeng. 19, 074008 (2009)

    Article  ADS  Google Scholar 

  20. D.-H. Kim, J.A. Wiler, D.J. Anderson, D.R. Kipke, D.C. Martin, Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater. 6, 57–62 (2010)

    Article  Google Scholar 

  21. V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005)

    Article  Google Scholar 

  22. M.D. Johnson, R.K. Franklin, M.D. Gibson, R.B. Brown, D.R. Kipke, Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. J. Neurosci. Methods 174, 62–70 (2008)

    Article  Google Scholar 

  23. S.K. An, S.I. Park, S.B. Jun, C.J. Lee, K.M. Byun, J.H. Sung et al., Design for a simplified cochlear implant system. IEEE Trans. Biomed. Eng. 54, 973–982 (2007)

    Article  Google Scholar 

  24. P. Maló, M. de Araújo Nobre, J. Borges, R. Almeida, Retrievable metal ceramic implant-supported fixed prostheses with milled titanium frameworks and all-ceramic crowns: retrospective clinical study with up to 10 years of follow-up. J. Prosthodont. 21, 256–264 (2012)

    Article  Google Scholar 

  25. J.F. Patrick, P.A. Busby, P.J. Gibson, The development of the nucleus® freedom cochlear implant system. Trends in Amplification 10, 175–200 (2006)

    Article  Google Scholar 

  26. C.M. Zierhofer, I.J. Hochmair, E.S. Hochmair, The advanced Combi 40+ cochlear implant. Am. J. otol. 18, S37–S38 (1997)

    Google Scholar 

  27. A.J.T. Teo, A. Mishra, I. Park, Y.-J. Kim, W.-T. Park, Y.-J. Yoon, Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Engin. 2, 454–472 (2016)

    Article  Google Scholar 

  28. V. Castagnola, E. Descamps, A. Lecestre, L. Dahan, J. Remaud, L.G. Nowak et al., Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens. Bioelectron. 67, 450–457 (2015)

    Article  Google Scholar 

  29. R.A. Normann, E.M. Maynard, P.J. Rousche, D.J. Warren, A neural interface for a cortical vision prosthesis. Vision. Res. 39, 2577–2587 (1999)

    Article  Google Scholar 

  30. F.J. Rodri, D. Ceballos, M. Schu, A. Valero, E. Valderrama, T. Stieglitz et al., Polyimide cuff electrodes for peripheral nerve stimulation. J. Neurosci. Methods 98, 105–118 (2000)

    Article  Google Scholar 

  31. L. Kee-Keun, H. Jiping, S. Amarjit, M. Stephen, E. Gholamreza, K. Bruce et al., Polyimide-based intracortical neural implant with improved structural stiffness. J. Micromech. Microeng. 14, 32 (2004)

    Article  Google Scholar 

  32. C. Hassler, T. Boretius, T. Stieglitz, Polymers for neural implants. J. Polym. Sci., Part B: Polym. Phys. 49, 18–33 (2011)

    Article  ADS  Google Scholar 

  33. B.J. Kim, E. Meng, Review of polymer MEMS micromachining. J. Micromech. Microeng. 26, 013001 (2015)

    Article  Google Scholar 

  34. J.H. Kim, K.S. Min, S.K. An, J.S. Jeong, S.B. Jun, M.H. Cho et al., Magnetic resonance imaging compatibility of the polymer-based cochlear implant. Clin. Exp. Otorhinolaryngol. 5, S19–S23 (2012)

    Article  Google Scholar 

  35. G. Jiang, D.D. Zhou, Technology advances and challenges in hermetic packaging for implantable medical devices, in Implantable neural prostheses 2: techniques and engineering approaches, ed. by D. Zhou, E. Greenbaum (Springer New York, New York, NY, 2010), pp. 27–61

    Google Scholar 

  36. T.M. Gwon, C. Kim, S. Shin, J.H. Park, J.H. Kim, S.J. Kim, Liquid crystal polymer (LCP)-based neural prosthetic devices. Biomed. Engin. Lett. 6, 148–163 (2016)

    Article  Google Scholar 

  37. S.J. Rebscher, A. Hetherington, B. Bonham, P. Wardrop, D. Whinney, P.A. Leake, Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion. J. Rehabil. Res. Dev. 45, 731–747 (2008)

    Article  Google Scholar 

  38. R. Shepherd, K. Verhoeven, J. Xu, F. Risi, J. Fallon, A. Wise, An improved cochlear implant electrode array for use in experimental studies. Hear. Res. 277, 20–27 (2011)

    Article  Google Scholar 

  39. P. Wardrop, D. Whinney, S.J. Rebscher, J.T. Roland Jr., W. Luxford, P.A. Leake, A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: comparison of nucleus banded and nucleus contour electrodes. Hear. Res. 203, 54–67 (2005)

    Article  Google Scholar 

  40. C.K. Berenstein, L.H.M. Mens, J.J.S. Mulder, F.J. Vanpoucke, Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations. Ear Hear. 29, 250–260 (2008)

    Article  Google Scholar 

  41. J.B. Firszt, D.B. Koch, M. Downing, L. Litvak, Current steering creates additional pitch percepts in adult cochlear implant recipients. Otol. Neurotology 28, 629–636 (2007)

    Article  Google Scholar 

  42. D.M. Landsberger, A.G. Srinivasan, Virtual channel discrimination is improved by current focusing in cochlear implant recipients. Hear. Res. 254, 34–41 (2009)

    Article  Google Scholar 

  43. B.H. Bonham, L.M. Litvak, Current focusing and steering: modeling, physiology, and psychophysics. Hear. Res. 242, 141–153 (2008)

    Article  Google Scholar 

  44. K.S. Min, S.B. Jun, Y.S. Lim, S.-I. Park, S.J. Kim, Modiolus-hugging intracochlear electrode array with shape memory alloy. Comput. Math. Methods Med. 2013, 9 (2013)

    Article  Google Scholar 

  45. Product brochure. Electrode arrays: designed for atraumatic implantation providing superior hearing performance. Available: http://s3.medel.com/pdf/21617.pdf

  46. B.K. Chen, G.M. Clark, R. Jones, Evaluation of trajectories and contact pressures for the straight nucleus cochlear implant electrode array—a two-dimensional application of finite element analysis. Med. Eng. Phys. 25, 141–147 (2003)

    Article  Google Scholar 

  47. M. Tykocinski, L.T. Cohen, B.C. Pyman, T.J. Roland, C. Treaba, J. Palamara et al., Comparison of electrode position in the human cochlea using various perimodiolar electrode arrays. Otol. Neurotology 21, 205–211 (2000)

    Google Scholar 

  48. E. Saunders, L. Cohen, A. Aschendorff, W. Shapiro, M. Knight, M. Stecker et al., Threshold, comfortable level and impedance changes as a function of electrode-modiolar distance. Ear Hear. 23, 28S–40S (2002)

    Article  Google Scholar 

  49. M.L. Hughes, P.J. Abbas, Electrophysiologic channel interaction, electrode pitch ranking, and behavioral threshold in straight versus perimodiolar cochlear implant electrode arrays. J. Acoust. Soc. Am. 119, 1538–1547 (2006)

    Article  ADS  Google Scholar 

  50. S. Corbett, J. Ketterl, T. Johnson, Polymer-based microelectrode arrays. MRS Online Proc. Libr. Arch. 926, 0926 (2006). CC06-02 (6 pages)

    Google Scholar 

  51. K.S. Min, S.H. Oh, M.H. Park, J. Jeong, S.J. Kim, A polymer-based multichannel cochlear electrode array. Otol Neurotol 35, 1179–1186 (2014)

    Google Scholar 

  52. P.T. Bhatti, A high-density thin-film electrode array for a cochlear prosthesis, Thesis University of Michigan, 2006

    Google Scholar 

  53. J. Wang, K.D. Wise, A hybrid electrode array with built-in position sensors for an implantable MEMS-Based cochlear prosthesis. J. Microelectromechan. Syst. 17, 1187–1194 (2008)

    Article  Google Scholar 

  54. J. Wang, K.D. Wise, A thin-film cochlear electrode array with integrated position sensing. J. Microelectromechan. Syst. 18, 385–395 (2009)

    Article  Google Scholar 

  55. L.M. Friesen, R.V. Shannon, D. Baskent, X. Wang, Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110, 1150–1163 (2001)

    Article  ADS  Google Scholar 

  56. J.D. Falcone, P.T. Bhatti, Current steering and current focusing with a high-density intracochlear electrode array, in Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society (2011), pp. 1049–52

    Google Scholar 

  57. C.A. Fielden, K. Kluk, C.M. McKay, Place specificity of monopolar and tripolar stimuli in cochlear implants: the influence of residual masking. J. Acoust. Soci. Am. 133, 4109–4123 (2013)

    Article  ADS  Google Scholar 

  58. Z. Zhu, Q. Tang, F.-G. Zeng, T. Guan, D. Ye, Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation. Hear. Res. 283, 45–58 (2012)

    Article  Google Scholar 

  59. S. Costello, M.P.Y. Desmulliez, S. McCracken, Review of test methods used for the measurement of hermeticity in packages containing small cavities. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 430–438 (2012)

    Article  Google Scholar 

  60. K. Aihara, M.J. Chen, C. Cheng, A.V.H. Pham, Reliability of liquid crystal polymer air cavity packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 224–230 (2012)

    Article  Google Scholar 

  61. A.-V. Pham, Packaging with liquid crystal polymer. IEEE Microwave Mag. 5, 83–91 (2011)

    Article  Google Scholar 

  62. B. Han, Measurements of true leak rates of MEMS packages. Sensors 12, 3082–3104 (2012)

    Article  Google Scholar 

  63. J. Jeong, S.H. Bae, J.-M. Seo, H. Chung, S.J. Kim, Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis. J. Neural Eng. 13, 025004 (2016)

    Article  ADS  Google Scholar 

  64. J.S. Ordonez, C. Boehler, M. Schuettler, T. Stieglitz, Silicone rubber and thin-film polyimide for hybrid neural interfaces; A MEMS-based adhesion promotion technique, in Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on (2013), pp. 872–875

    Google Scholar 

  65. J.S. Ordonez, C. Boehler, M. Schuettler, and T. Stieglitz, Improved polyimide thin-film electrodes for neural implants, in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE (2012), pp. 5134–5137

    Google Scholar 

  66. J.H. C. Chang, L. Yang, K. Dongyang, T. Yu-Chong, Reliable packaging for parylene-based flexible retinal implant, in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII) (2013), pp. 2612–2615

    Google Scholar 

  67. R. von Metzen, T. Stieglitz, The effects of annealing on mechanical, chemical, and physical properties and structural stability of Parylene C. Biomed. Microdevice 15, 727–735 (2013)

    Article  Google Scholar 

  68. J.H. Kim, A study on low-cost, effective, and reliable liquid crystal polymer-based cochlear implant system, Ph.D. Thesis, Department of electrical engineering and computer science, Seoul National University, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Mok Gwon .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gwon, T.M. (2018). Introduction. In: A Polymer Cochlear Electrode Array: Atraumatic Deep Insertion, Tripolar Stimulation, and Long-Term Reliability. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-0472-9_1

Download citation

Publish with us

Policies and ethics