Advertisement

Si3N4 Ceramics Systems

  • Zhenkun HuangEmail author
  • Laner Wu
Chapter
  • 414 Downloads

Abstract

Phase diagrams of Si3N4-based ceramics systems which include two subsystems of Si3N4–MxXy and various SiAlON solid solutions are collected in this chapter. MxXy are oxides, rare earth oxides, or certain non-oxide compound usually as sintering aids of Si3N4 ceramic. At high temperature, MxXy react with Si3N4 forming diverse nitrogen-containing silicates and aluminosilicates reserved as secondary phase in these systems. Phase diagrams of SiAlON systems can be a guide for manufacturing of the SiAlONs ceramics. Five different types of SiAlON ceramics with significance in crystal chemistry and physical chemistry of nitrogen ceramics are presented in this chapter, namely, (a) β–SiAlON (β–Si3N4 ss), (b) α–SiAlON (α–Si3N4 ss), (c) O′SiAlON (Si2ON2–Al2O3 ss), (d) M′(R)–SiAlON (“Si3N4·R2O3”–Al2O3 ss), and (e) SiAlON polytypoids.

References

  1. 1.
    Weiss J, Lukas HL, Lorenz J et al (1981) Calculation of heterogeneous phase equilibria in oxide-nitride systems: I. The quaternary system C–Si–N–O. CALPHAD: Comput Coupling Phase Diagr Thermochem 5(2):125–140CrossRefGoogle Scholar
  2. 2.
    Lukas HL, Weiss J, Henig ET (1982) Strategies for the calculation of phase diagrams. CALPHAD: Comput Coupling Phase Diagr Thermochem 6(3):229–251CrossRefGoogle Scholar
  3. 3.
    Stull DR, Prophet H (1971) JANAF thermochemical tables, 2nd edn. Natl. Stand. Ref. Data Ser. (U. S., Natl. Bur. Stand.). Rep. No. NSRDS-NBS 37, National Bureau of Standards, U.S. Department of Commerce, Washington, D.C, 1141Google Scholar
  4. 4.
    Hultgren R, Desai PD, Hawkins DT et al (1973) Selected values of the thermodynamic properties of the elements. American Society of Metals, Metals Park, pp 465–471Google Scholar
  5. 5.
    Richter HJ, Herrmann M, Hermel W (1991) Calculation of heterogeneous phase equilibria in the system Si–Mg–N–O. J. Eur Ceram Soc 7(1):3–9Google Scholar
  6. 6.
    Huang ZK, Tien TY (1996) Solid-liquid reaction in the Si3N4–A1N–Y2O3 system under 1 MPa of nitrogen. J Am Ceram Soc 79(6):1717–1719CrossRefGoogle Scholar
  7. 7.
    Huang ZK, Tien TY (1994) Solid-liquid reaction in the system Si3N4–Y3Al5O12–Y2Si2O7 under 1 MPa of nitrogen. J Am Ceram Soc 77(10):2763–2766CrossRefGoogle Scholar
  8. 8.
    Mitomo M, Izumi F, Horiuchi S et al (1982) Phase relationships in the system Si3N4–SiO2–La2O3. J Mater Sci 17(8):2359–2364CrossRefGoogle Scholar
  9. 9.
    Wu LE, Sun WZ, Chen YH et al (2011) Phase relations in Si–C–N–O–R (R = La, Gd, Y) systems. J Am Ceram Soc 94(12):4453–4458CrossRefGoogle Scholar
  10. 10.
    Lange FF (1980) Si3N4-Ce2O3–SiO2 materials–phase relations and strength. Am Ceram Soc Bull 59(2):239–240, 249Google Scholar
  11. 11.
    Lange FF, Singhal SC, Kuznicki RC (1977) Phase relations and stability studies in the Si3N4–SiO2–Y2O3 pseudoternary system. J Am Ceram Soc 60(5–6):249–252CrossRefGoogle Scholar
  12. 12.
    Jack KH (1978) Phase relations in the Si3N4–SiO2–Y2O3 system. Int J Mater Res 11:561–578Google Scholar
  13. 13.
    Cao GZ, Huang ZK, Fu XR et al (1985) Phase equilibrium studies in Si2N2O-containing systems: I. phase relations in the Si2N2O–Al2O3–Y2O3 system. Int J High Technol Ceram 1(2):119–127Google Scholar
  14. 14.
    Cao GZ, Huang ZK, Fu XR et al (1989) Phase relationship in the Si3N4-Y2O3–La2O3 system. China Sci Ser A 32(4):429–433Google Scholar
  15. 15.
    Nash A, Nash P (1987) The Ge–Ni (Germanium-Nickel) system. Bull Alloy Phase Diagr 8(3):255–264CrossRefGoogle Scholar
  16. 16.
    Cheng YB, Thompson DP (1994) Ceramics, powders, corrosion and advanced processing. Trans Mater Res Soc Jpn 14A:895–898Google Scholar
  17. 17.
    Weiss J, Gauckler LJ, Lukas HL et al (1981) Determination of phase equilibria in the system Si-Al–Zr/N–O by experiment and thermodynamic calculation. J Mater Sci 16(11):2997–3005CrossRefGoogle Scholar
  18. 18.
    Lu Y, Huai X, Wu L et al (2015) Phase composition of ZrN–Si3N4–Y2O3 composite material. J Chin Ceram Soc 43(12):1742–1746Google Scholar
  19. 19.
    Lukas HL, Weiss J, Kreig H et al (1982) Phase equilibria in Si3N4 and SiC ceramics. High Temp High Press 14(5):607–616Google Scholar
  20. 20.
    Tien TY, Petzow G, Gauckler LJ et al (1983) Phase equilibrium studies in Si3N4-metal oxides systems. In: Riley FL (ed) NATO ASI serial, Serial E, Progress nitrogen ceramics. Kulwer Academic Publishers, Dordrecht, pp 89–99CrossRefGoogle Scholar
  21. 21.
    Inomata Y, Hasegawa Y, Matsuyama T (1977) Reaction between Si3N4 and MgO as a hot pressing aid. J Ceram Soc Jpn 85:29–31Google Scholar
  22. 22.
    Jack KH (1978) The fabrication of dense nitrogen ceramics. Processing of crystalline ceramics. In: Palimour H., III, Davis RF, Hare TM (eds) Plenum Publishing Corp., New York, pp 561–578Google Scholar
  23. 23.
    Lange FF (1978) Phase relations in the system Si3N4-SiO2–MgO and their interrelation with strength and oxidation. J Am Ceram Soc 61(1–2):53–56CrossRefGoogle Scholar
  24. 24.
    Lange FF (1979) Eutectic studies in the system Si3N4–Si2N2O–Mg2SiO4. J Am Ceram Soc 62(11–12):617–619CrossRefGoogle Scholar
  25. 25.
    Sun WY, Yan DS, Tien TY (1988) Subsolidus phase relationships in part of the system Si–Al–Ca–N–O. J Chin Ceram Soc 16(2):130–137Google Scholar
  26. 26.
    Oyama Y, Kamigaito O (1971) Solid solubility of some oxides in Si3N4. Jpn J Appl Phys 10(11):1637CrossRefGoogle Scholar
  27. 27.
    Oyama Y (1972) Solid solution in the ternary system, Si3N4–AlN–Al2O3. Jpn J Appl Phys 11(5):760CrossRefGoogle Scholar
  28. 28.
    Oyama Y (1974) Solid solution in the system silicon nitride-aluminum nitride-aluminum oxide. Yogyo Kyokai Shi 82(7):351–357CrossRefGoogle Scholar
  29. 29.
    Jack KH, Wilson WI (1972) Ceramics based on the Si–Al–ON and related systems. Nat Phys Sci 238:28–29CrossRefGoogle Scholar
  30. 30.
    Jack KH (1973) Solid solubility of alumina in silicon nitride. Trans J Br Ceram Soc 72:376–378Google Scholar
  31. 31.
    Gauckler LJ, Lukas HL, Petzow G (1975) Contribution to the phase diagram Si3N4–AlN–Al2O3–SiO2. J Am Ceram Soc 58(7–8):346–347CrossRefGoogle Scholar
  32. 32.
    Layden GK (1976) Process development for pressureless sintering of silicon-aluminum-oxygen-nitrogen ceramic components. United Technologies Research Center, East HartfordGoogle Scholar
  33. 33.
    Naik IK, Gauckler LJ, Tien TY (1978) Solid-liquid equilibria in the system Si3N4–AlN–SiO2–A12O3. J Am Ceram Soc 61(7–8):332–335CrossRefGoogle Scholar
  34. 34.
    Land PL, Wimmer JM, Burns RW et al (1978) Compounds and properties of the system Si-Al–O–N. J Am Ceram Soc 61(1–2):56–60CrossRefGoogle Scholar
  35. 35.
    Mao H, Selleby M (2007) Thermodynamic reassessment of the Si3N4–AlN–Al2O3–SiO2 system—modeling of the SiAlON and liquid phases. CALPHAD: Comput Coupling Phase Diagrams Thermochem 31(2):269–280CrossRefGoogle Scholar
  36. 36.
    Jack KH (1976) SiAlONs and related nitrogen ceramics. J Mater Sci 11(6):1135–1158CrossRefGoogle Scholar
  37. 37.
    Jack KH (1977) The crystal chemistry of the SiAlONs and related nitrogen ceramics. In: Riler Fl (ed) Crystal chemistry. NATO Advanced Study Institute Series, vol. 23. Noordhoff International Publishing, pp 109–128Google Scholar
  38. 38.
    Gauckler LJ (1976) Equilibrium in the systems Si, Al/N, O and Si, Al, Be/N, O. Dissertation, University of StuttgartGoogle Scholar
  39. 39.
    Sun WY, Yan DS, Gao L et al (1995) Subsolidus phase relationships in systems Ln2O3–Si3N4–AlN–Al2O3 (R = Nd, Sm). J Eur Ceram Soc 15(4):349–355CrossRefGoogle Scholar
  40. 40.
    Sun WY, Huang ZK, Chen JX (1983) Subsolidus phase relationships in the system Y2O3–Al2O3:AlN–Si3N4. Trans J Br Ceram Soc 82(5):173–175Google Scholar
  41. 41.
    Naik K, Tien TY (1979) Subsolidus phase relations in part of the system Si, Al, Y/N, O. J Am Ceram Soc 62(11–12):642–643CrossRefGoogle Scholar
  42. 42.
    Thompson DP (1986) Phase relationships in Y–Si–Al–O–N ceramics. In: Tressler RE, Messing GL, Pantano CG, Newnham RE (eds) Tailoring multiphase and composite ceramics, vol 20. Plenum Publishing Corp., New York, pp 79–91CrossRefGoogle Scholar
  43. 43.
    Sun WY, Tien TY, Yen TS (1991) Subsolidus phase relationships in part of the system Si, Al, Y/N, O: the system Si3N4–AIN–YN–Al2O3–Y2O3. J Am Ceram Soc 74(11):2753–2758CrossRefGoogle Scholar
  44. 44.
    Thompson DP, Korgul P, Hendry A (1983) The structural characterisation of SiAlON polytypoids. NATO ASI Series. Series E Appl Phys (Prog Nitrogen Ceram) 65:61–74Google Scholar
  45. 45.
    Kolitsch U, Seifert HJ, Ludwig T et al (1999) Phase equilibria and crystal chemistry in the Y2O3–Al2O3–SiO2 system. J Mater Sci 14(2):447–455Google Scholar
  46. 46.
    Huang ZK, Tien TY, Yen TS (1986) Subsolidus phase relationships in Si3N4–AlN-rare-earth oxide systems. J Am Ceram Soc 69(10):C241–C242CrossRefGoogle Scholar
  47. 47.
    Sun WY, Tien TY, Yen TS (1991) Solubility limits of α′–SiAlON solid solutions in the system Si, Al, Y/N, O. J Am Ceram Soc 74(10):2547–2550CrossRefGoogle Scholar
  48. 48.
    Huang ZK, Greil P, Petzow G (1983) Formation of α-Si3N4 solid solutions in the system Si3N4–A1N–Y2O3. J Am Ceram Soc 66(6):C96–C97CrossRefGoogle Scholar
  49. 49.
    Huang ZK, Yan DS, Tien TY (1986) Formation of R-α′-SiAlON and phase relations in the systems Si3N4AlN-R2O3 (R = Nd, Sm, Gd, Dy, Er and Yb). J Inorg Mater (Chinese) 1(1):55–63Google Scholar
  50. 50.
    Zhu WH, Wang PL, Jia YX et al (1994) Formation of (Na)-SiAlON. J Inorg Mater (Chinese) 9(1):65–71Google Scholar
  51. 51.
    Huang ZK, Sun WY, Yan DS (1985) Phase relations of the Si3N4–AIN–CaO system. J Mater Sci Lett 4(3):255–259CrossRefGoogle Scholar
  52. 52.
    Kuang SF, Huang ZK, Sun WY et al (1990) Phase relationships in the Li2O–Si3N4–AlN system and the formation of lithium-α′–SiAlON. J Mater Sci Lett 9(1):72–74CrossRefGoogle Scholar
  53. 53.
    Kuang SF, Huang ZK, Sun WY et al (1990) Phase relationships in the system MgO-Si3N4–AlN. J Mater Sci Lett 9(1):69–71CrossRefGoogle Scholar
  54. 54.
    Tanaka H, Hasegawa Y, Inomata Y (1978) Phase relations in the system Si2ON2–Y2O3–Al2O3 at 1400 °C. J Ceram Soc Jpn 86(8):365–368Google Scholar
  55. 55.
    Cao GZ, Huang ZK, Fu XR et al (1986) Phase equilibrium studies in Si2N2O-containing systems: II. Phase relations in the Si2N2O–Al2O3–La2O3 and Si2N2O–Al2O3–CaO systems. Int J High Technol Ceram 2(2):115–121Google Scholar
  56. 56.
    Cao GZ, Huang ZK, Fu XR et al (1987) Subsolidus phase relations in Si2N2O-Al2O3–La2O3 and Si2N2O–Al2O3–CaO systems. J Inorg Mat (Chinese) 2(1):54–60Google Scholar
  57. 57.
    Cao G, Huang Z, Fu X et al (1985) Phase relations of Y2O3–Al2O3–Si2N2O. China Sci Ser 4:379–383Google Scholar
  58. 58.
    Wang PL, Tu HY, Sun WY et al (1995) Study on the solid solubility of Al in the melilite system R2Si3-xAlxO3 + xN4-x with R = Nd, Sm, Gd, Dy and Y. J Eur Ceram Soc 15:689–695CrossRefGoogle Scholar
  59. 59.
    Huang ZK, Chen IW (1996) Rare-earth melilite solid solution and its phase relations with neighboring phases. J Am Ceram Soc 79(8):2091–2097CrossRefGoogle Scholar
  60. 60.
    Huseby IC, Lukas HL, Petzow G (1975) Phase equilibria in the system Si3N4–SiO2–BeO–Be3N2. J Am Ceram Soc 58(9–10):377–380CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Materials Science and EngineeringBeifang University of NationalitiesYinchuanChina
  2. 2.Materials Science and EngineeringBeifang University of NationalitiesYinchuanChina

Personalised recommendations