Skip to main content

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 272))

  • 1382 Accesses

Abstract

Analyzing the composition, microstructure and electronic structure of materials at the atomic/nanoscale is key issues for material science, which provides the information necessary for correlating the microstructures and the measured chemical and physical properties of a solid specimen. Energy-dispersive X-ray spectroscopy (EDS) and Electron energy-loss spectroscopy (EELS) are two important techniques for determining the structure and/or chemical composition of a solid. Benefited from the development of electron microscope, the application of EDS and EELS is growing rapidly worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamgir, F.M., Jain, H., Williams, D.B., Schwarz, R.B.: The structure of a metallic glass system using EXELFS and EXAFS as complementary probes. Micron 34, 433 (2003)

    Article  Google Scholar 

  • Bangert, U., Harvey, A.J., Keyse, R.: Assessment of electron energy-loss spectroscopy below 5 eV in semiconductor materials in a VG STEM. Ultramicroscopy 68, 173 (1997)

    Article  Google Scholar 

  • Batson, P.E.: Simultaneous stem imaging and electron-energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727 (1993)

    Article  ADS  Google Scholar 

  • Batson, P.E., Kavanagh, K.L., Woodall, J.M., Mayer, J.W.: Electron energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys. Rev. Lett. 57, 2729 (1986)

    Article  ADS  Google Scholar 

  • van Benthem, K., Elsässer, C., Frence, R.H.: Bulk electronic structure of SrTiO\(_{3}\): experiment and theory. J. Appl. Phys. 90, 6156 (2001)

    Article  ADS  Google Scholar 

  • Bentley, J., Zaluzec, N.J., Kenik, E.A., Carpenter, R.W.: Optimization of an analytical electron microscope for X-ray microanalysis: instrumental problems. Oak Ridge National Lab, TN (USA) (1979)

    Google Scholar 

  • Chen, T.M., Lan, S.M., Uen, W.Y., Yang, T.N., Chang, K.J.: Structure and composition analysis of the Cu-Zn-Se ternary compounds by TEM/EDS. J. Crys. Growth. 388, 87 (2014)

    Article  ADS  Google Scholar 

  • Colliex, C.: New trends in STEM-based Nano-EELS analysis. J. Electron Microsc. 45, 44 (1996)

    Article  Google Scholar 

  • Crewe, A., Wall, J., Langmore, J.: Visibility of single atoms. Science 168, 1338 (1970)

    Google Scholar 

  • Crewe, A.: The Physics of the high resolution STEM. Rep. Prog. Phys 43, 621 (1980)

    Article  ADS  Google Scholar 

  • Crozier, P.A.: Quantitative elemental mapping of materials by energy-?ltered imaging. Ultramicroscopy 58, 157 (1995)

    Article  Google Scholar 

  • Dieterle, L., Bach, D., Schneider, R., Stömer, H., Gerthsen, D., Guntow, U., Ivers-Tiffée, E., Weber, A., Peters, C., Yokokawa, H.: Structural and chemical properties of nanocrystalline La\(_{0.5}\)Sr\(_{0.5}\)CoO\(_{3}\)-delta layers on yttria-stabilized zirconia analyzed by transmission electron microscopy. J. Mater. Sci. 43, 3135 (2008)

    Article  ADS  Google Scholar 

  • Duscher, G., Buczko, R., Pennycook, S.J., Pantelides, S.T.: Core-hole effects on energy-loss near-edge structure. Ultramicroscopy 86, 355 (2001)

    Article  Google Scholar 

  • Egerton, R.F.: Inelastic-scattering and energy filtering in transmission electron-microscope. Philos. Mag. 34, 49 (1976)

    Article  ADS  Google Scholar 

  • Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscopy. Springer, New York (2011)

    Book  Google Scholar 

  • Egerton, R.F., Cheng, S.C.: Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 21, 231 (1987)

    Article  Google Scholar 

  • Egerton, R.F.: Electron Energy Loss Spectroscopy in the Electron Microscope. 2nd edn, Plenum Press (1996)

    Google Scholar 

  • Gass, M.H., Koziol, K., Windle, A.H., Midgley, P.A.: Four-dimensional spectral tomography of carbonaceous nanocomposites. Nano. Lett. 6, 376 (2006)

    Article  ADS  Google Scholar 

  • Goldstein, J.I., Williams, D.B., Cliff, G.: Principles of Analytical Electron Microscopy. Plenum Press, New York (1986)

    Google Scholar 

  • Grovenor, C.R.M., Batson, P.E., Smith, D.A., Wong, C.: As segregation to grain boundaries in Si. Philos. Mag. A. 50, 409 (1985)

    Article  ADS  Google Scholar 

  • Gu, L., Zhu, C.B., Li, H., Yu, Y., Li, C.L., Tsukimoto, S., Maier, J., Ikuhara, Y.: Direct observation of lithium staging in partially delithiated LiFePO\(_{4}\) at atomic resolution. J. Am. Chem. Soc 133, 4661 (2011)

    Article  Google Scholar 

  • Hébert, C., Schattschneider, P.: A proposal for dichroic experiments in the electron microscope. Ultramicroscopy 96, 463 (2003)

    Article  Google Scholar 

  • Han, X.D., Zheng, K., Zhang, Y.F., Zhang, X.N., Zhang, Z., Wang, Z.L.: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater 1, 8 (2007)

    Google Scholar 

  • He, X., Gu, L., Zhu, C., Yu, Y., Li, C., Hu, Y.S., Li, H., Tsukimoto, S., Maier, J., Ikuhara, Y.: Direct imaging of lithium ions using aberration-corrected annular-bright-field scanning transmission electron microscopy and associated contrast mechanisms. Mater. Express 1, 43 (2011)

    Article  Google Scholar 

  • Hu, K.X., Jones, I.P.: Low electron energy-loss spectroscopy study of the electronic structure of matrix and S19, S13 boundaries in SrTiO3. J. Phys. D: Appl. Phys. 38, 183 (2005)

    Article  ADS  Google Scholar 

  • Huang, R., Hitosugi, T., Findlay, S.D., Fisher, C.A.J., Ikuhara, Y.H., Moriwake, H., Oki, H., Ikuhara, Y.: Real-time direct observation of Li in LiCoO\(_{2}\) cathode material. Appl. Phys. Lett 98, 051913 (2011)

    Article  ADS  Google Scholar 

  • Ito, Y., Alamgir, F.M., Jain, H., Williams, D.B., Schwarz, R.B.: EXELFS of metallic glasses. Bulk Met. Glasses. Symp. 31, 6 (1999)

    Google Scholar 

  • Jiang, N., Jiang, B., Spence, J.C.H., Yu, R.C., Li, S.C., Jin, C.Q.: Anisotropic excitons in MgB2 from orientation-dependent electron-energy-loss spectroscopy. Phys. Rev. B. 66, 172502 (2002)

    Article  ADS  Google Scholar 

  • Keast, V.J., Scott, A.J., Brydson, R., Williams, D.B., Bruley, J.: Electron energy-loss near-edge structure-a tool for the investigation of electronic structure on the nanometre scale. J. Microsc. 203, 135 (2001)

    Article  MathSciNet  Google Scholar 

  • Kimoto, K., Sekiguchi, T., Aoyama, T.: Chemical shift mapping of Si L and K edges using spatially resolved EELS and energy-filtering TEM. J. Electron Micros. 46, 369 (1997)

    Article  Google Scholar 

  • Kimoto, K., Kothleitner, G., Grogger, W., Matsui, Y.: Ferdinand Hofer Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy. Micron 36, 185 (2005)

    Article  Google Scholar 

  • Lazar, S., Botton, G., Wu, M.-Y., Tichelaar, F., Zandbergen, H.: Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy 96, 535 (2003)

    Article  Google Scholar 

  • Muller, D.A., Tzou, Y., Ray, R., Silcox, J.: Mapping SP2 and SP3 states of carbon at subnanometer spatial resolution. Nature 366, 725 (1993)

    Article  ADS  Google Scholar 

  • Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N., Krivanek, O.L.: Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073 (2008)

    Article  ADS  Google Scholar 

  • Murakami, Y., Shindo, D., Otsuka, K., Oikawa, T.: Electronic structure changes associated with a martensitic transformation in a Ti\(_{50}\)Ni\(_{48}\)Fe\(_{2}\) alloy studied by electron energy-loss spectroscopy. J. Electron Micros. 47, 301 (1998)

    Article  Google Scholar 

  • Nelayah, J., Kociak, M., Stephan, O., Garcia de Abajo, F.J., Tence, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzan, L.M., Colliex, C.: Mapping surface plasmons on a singlemetallic nanoparticle. Metall. Nanoparticle Nat. Phys. 3, 348 (2007)

    Google Scholar 

  • Nufer, S., Gemming, T., Elsäser, C., Kötlmeier, S., Rüle, K.: Core-hole effect in the ELNES of \(\alpha \)-Al\(_{2}\)O\(_{3}\): experiment and theory. Ultramicroscopy 86, 339 (2001)

    Article  Google Scholar 

  • Otten, M.T., Miner, B., Rask, J.H., Buseck, P.R.: The determination of Ti, Mn and Fe oxidation states in minerals by electron energy-loss spectroscopy. Ultramicroscopy 18, 285 (1985)

    Article  Google Scholar 

  • Pearson, D.H., Ahn, C.C., Fultz, B.: White lines and d-electron occupancies for the 3d and 4d transition metals. Phys. Rev. B. 47, 8471 (1993)

    Article  ADS  Google Scholar 

  • Petrova, R.V.: Quantitative high-angle annular dark field scanning transmission electron microscopy for materials science, Ph.D dissertation, University of Central Florida, Orlando (2006)

    Google Scholar 

  • Raether, H.: Excitation of Plasmons and Interband Transitions by Electrons. Springer press, Berlin (1980)

    Google Scholar 

  • Rafferty, B., Pennycook, S.J., Brown, L.M.: Zero loss peak deconvolution for bandgap EEL spectra. J. Electron Micros. 49, 517 (2000)

    Article  Google Scholar 

  • Rafferty, B., Brown, L.M.: Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B. 58, 10326 (1998)

    Article  ADS  Google Scholar 

  • Ruthemann, G.: Diskrete energieverluste schneller elektronen in festkörpern. Naturwissenschaften 29, 648 (1941)

    Article  ADS  Google Scholar 

  • Ryen, L., Wang, X., Helmersson, U., Olsson, E.: Determination of the complex dielectric function of epitaxial SrTiO\(_3\) films using transmission electron energy-loss spectroscopy. J. Appl. Phys. 85, 2828 (1998)

    Article  ADS  Google Scholar 

  • Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kunes̆ J., Novák, P., Carlino, E., Fabrizioli, M. Panaccione, G. and Rossi, G.: Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486 (2006)

    Google Scholar 

  • Scheinfein, M., Isaacson, M.: Design and performance of 2nd order corrected spectrometers for use with the scanning-transmission electron-microscope. Scanning Electron Micros., 1681–1696 (1984)

    Google Scholar 

  • Schulmeister, K., Mader, W.: TEM investigation on the structure of amorphous silicon monoxide. J. Non-Cryst. Solids 320, 143 (2003)

    Article  ADS  Google Scholar 

  • Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E.C., O’Keefe, M.A.: Atomic resolution of lithium ions in LiCoO\(_{2}\). Nat. Mater. 2, 464 (2003)

    Article  ADS  Google Scholar 

  • Stöger-Pollach, M., Treiber, C.D., Resch, G.P., Keays, D.A., Ennen, I.: Real space maps of magnetic properties in Magnetospirillum magnetotacticum using EMCD. Micron 42, 461 (2011)

    Google Scholar 

  • Stöhr, J.: Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470 (1999)

    Article  ADS  Google Scholar 

  • Tafto, J., Krivanek, O.L.: Site-specific valence determination by EELS. Phys. Rev. Lett 48, 560 (1982)

    Article  ADS  Google Scholar 

  • Tafto, J., Lehmpfuhl, G.: Direction dependence in EELS from single crystals. Ultramicroscopy 7, 287 (1982)

    Article  Google Scholar 

  • Tan, H., Turner, T., Yücelen, E., Verbeeck, J., Van Tendeloo, G.: 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys. Rev. Lett. 107, 107602 (2011)

    Article  ADS  Google Scholar 

  • Terauchi, M., Koike, M., Kukushima, K., Kimura, A.: Development of wavelength-dispersive soft x-ray emission spectrometers for transmission electron microscopes-an introduction of valence electron spectroscopy for transmission electron microscopy. J. Electron Microsc. 59, 251 (2010b)

    Google Scholar 

  • Terauchi, M., Takahashi, H., Handa, N., Murano, T., Koike, M., Kawachi, T., Imazono, T., Koeda, M., Nagano, T., Sasai, H., Oue, Y., Onezawa, Z., Kuramoto, S.: Li K-emission measurements using a newly developed SXES-TEM instrument. Microsc. Micronal 16, 1308 (2010a)

    Google Scholar 

  • Verbeeck, J., Tian, H., Schattschneider, P.: Production and application of electron vortex beams. Nature 467, 301 (2010)

    Article  ADS  Google Scholar 

  • Verbeeck, J., Van Dyck, D., Van Tendeloo, G.: Energy-filtered transmission electron microscopy: an overview. Spectrochim. Acta Part B: Atomic Spectrosc. 59, 1529 (2004)

    Article  ADS  Google Scholar 

  • Watanabe, M., Kanno, M., Akunishi, E.: Atomic-level chemical analysis by EELS and XEDS in aberration-corrected scanning transmission electron microscopy. JEOL News 45, 8 (2010b)

    Google Scholar 

  • Watanabe, M., Okunishi, E., Aoki, T.: Atomic-level chemical analysis by EELS and XEDS in aberration-corrected scanning transmission electron microscopy. Microsc. Microanal. 16, 66 (2010a)

    Google Scholar 

  • Williams, D.B., Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science. Springer, New York (2009)

    Book  Google Scholar 

  • Williams, D.B.: Practical Analytical Electron Microscopy in Materials Science, 2nd edn. Philips Electron Optics Publishing Group, New Jersey (1987)

    Google Scholar 

  • Williams, D.B., Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science. Plenum Press, New York, London (1996). Chapter 34

    Book  Google Scholar 

  • Williams, D.B., Carter, C.B.: Transmission electron microscopy. Springer (1996)

    Google Scholar 

  • Wittig, J.E., Al-Sharaba, J.F., Doerner, M., Bian, X.P., Bentley, J., Evans, N.D.: Influence of microstructure on the chemical inhomogeneities in nanostructured longitudinal magnetic recording media. Scr. Mater. 48, 943 (2003)

    Article  Google Scholar 

  • Xin, S., Gu, L., Zhao, N.H., Yin, Y.Y., Zhou, L.J., Guo, Y.G., Wan, L.J.: Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 1850 (2012)

    Article  Google Scholar 

  • Yang, G., Ramasse, Q., Klie, R.F.: Direct measurement of charge transfer in thermoelectric Ca\(_{3}\)Co\(_{4}\)O\(_{9}\). Phys. Rev. B 78, 153109 (2008)

    Article  ADS  Google Scholar 

  • Yang, G.Y., Zhu, J.: 3D occupancy determination from Fe L\(_{2,3}\) electron energy-loss spectra of nanocrystalline-amorphous Fe\(_{73.5}\)Cu\(_{1}\)Mo\(_{3}\)Si\(_{13.5}\)B\(_{9}\) alloy. J. Magn. Magn. Mater. 220, 65 (2000)

    Article  ADS  Google Scholar 

  • Zhang, Z.H., Wang, X.F., Xu, J.B., Muller, S., Ronning, C., Li, Q.: Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures. Nat. Nanotechnol. 4, 523 (2009)

    Article  ADS  Google Scholar 

  • Zhang, Z.H., Yang, J.J., He, M., Wang, X.F., Li, Q.: Electronic structure of a potential optical crystal YBa\(_{3}\)B\(_{9}\)O\(_{18}\): Experiment and theory. Appl. Phys. Lett. 92, 171903 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Peking University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z., Yue, Y., He, J. (2018). Spectroscopy. In: Wang, R., Wang, C., Zhang, H., Tao, J., Bai, X. (eds) Progress in Nanoscale Characterization and Manipulation. Springer Tracts in Modern Physics, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-13-0454-5_5

Download citation

Publish with us

Policies and ethics