Skip to main content

Scanning Transmission Electron Microscopy (STEM)

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 272))

Abstract

Although Baron Manfred von Ardenne (ZPhys 109:553–572, 1938a, Z Tech Phys 19:407–416, 1938b) developed the first scanning transmission electron microscopy (STEM) in 1938, placing the image lens before the specimen instead of after the specimen as in the Ruska TEM design, it is just a sound idea in principle: he did not use a field emission source such that the 10 nm resolution images he achieved were too noisy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anstis, G.R., Cai, D.Q., Cockayne, D.J.H.: Limitations on the s-state approach to the interpretation of sub-angstrom resolution electron microscope images and microanalysis. Ultramicroscopy 94, 309–327 (2003)

    Article  Google Scholar 

  • Ardenne, M.V.: Das Elektronen-rastermikroskop, theoretische grundlagen. ZPhys 109, 553–572 (1938a)

    ADS  Google Scholar 

  • Ardenne, M.V.: Das Elektronen-rastermikroskop. Praktische Ausführung. Z. Tech. Phys. 19, 407–416 (1938b)

    Google Scholar 

  • Blavette, D., Cadel, E., Deconihout, B.: The role of the atom probe in the study of nickel-based superalloys. Mater. Charact. 44, 133–157 (2000)

    Article  Google Scholar 

  • Blom, D.A.: Multislice frozen phonon high angle annular dark-field image simulation study of Mo-V-Nb-Te-O complex oxidation catalyst "M1". Ultramicroscopy 112, 69–75 (2012)

    Article  Google Scholar 

  • Borisevich, A.Y., Lupini, A.R., Pennycook, S.J.: Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. USA 103, 3044–3048 (2006)

    Article  ADS  Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford (1980)

    Google Scholar 

  • Chu, M.W., Liou, S.C., Chang, C.P., Choa, F.S., Chen, C.H.: Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-corrected electron microscope. Phys. Rev. Lett. 104, 196101 (2010)

    Article  ADS  Google Scholar 

  • Cowley, J.M.: Image contrast in a transmission scanning electron microscope. ApPhL 15, 58–59 (1969)

    ADS  Google Scholar 

  • Cowley, J.M.: Electron diffraction phenomena observed with a high resolution STEM instrument. JEMT 3, 25–44 (1986)

    Google Scholar 

  • Crewe, A.V.: Scanning electron microscopes-is high resolution possible. Science 154, 729 (1966)

    Article  ADS  Google Scholar 

  • Crewe, A.V.: High resolution scanning microscopy of biological specimens. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 261, 61 (1971)

    Google Scholar 

  • Crewe, A.V., Salzman, D.B.: On the optimum resolution for a corrected stem. Ultramicroscopy 9, 373–377 (1982)

    Article  Google Scholar 

  • Crewe, A.V., Wall, J.: A Scanning microscope with 5 a resolution. JMBio 48, 375 (1970)

    Article  Google Scholar 

  • Crewe, A.V., Isaacson, M., Johnson, D.: Electron energy loss spectra of nucleic acid bases. Nature 231, 262 (1971)

    Article  ADS  Google Scholar 

  • Crewe, A.V., Wall, J., Langmore, J.: Visibility of single atoms. Science 168, 1338 (1970)

    Article  ADS  Google Scholar 

  • Crewe, A.V., Wall, J., Welter, L.M.: A high-resolution scanning transmission electron microscope. JAP 39, 5861–5868 (1968)

    ADS  Google Scholar 

  • D’Alfonso, A.J., Freitag, B., Klenov, D., Allen, L.J.: Atomic-resolution chemical mapping using energy-dispersive X-ray spectroscopy. Phys. Rev. B 81, 100101 (2010)

    Article  ADS  Google Scholar 

  • Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd edn. Springer (2011)

    Google Scholar 

  • Engel, A., Wiggins, J.W., Woodruff, D.C.: Comparison of calculated images generated by 6 modes of transmission electron-microscopy. JAP 45, 2739–2747 (1974)

    ADS  Google Scholar 

  • Erni, R.: Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction. ICP/Imperial College Press, London (2010)

    Book  Google Scholar 

  • Findlay, S.D., Shibata, N., Ikuhara, Y.: What atomic resolution annular dark field imaging can tell us about gold nanoparticles on TiO2TiO2 (110). Ultramicroscopy 109, 1435–1446 (2009a)

    Article  Google Scholar 

  • Findlay, S.D., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Yamamoto, T., Ikuhara, Y.: Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. ApPhL 95, 191913 (2009b)

    ADS  Google Scholar 

  • Findlay, S.D., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Ikuhara, Y.: Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903–923 (2010)

    Article  Google Scholar 

  • Fultz, B., Howe, J.M.: Transmission Electron Microscopy and Diffractometry of Materials, 3rd edn. Springer, New York (2008)

    Google Scholar 

  • Ge, B.H., Luo, Y.S., Li, J.R., Zhu, J.: Distribution of rhenium in a single crystal nickel-based superalloy. Scr. Mater. 63, 969–972 (2010)

    Article  Google Scholar 

  • Ge, B., Luo, Y., Li, J., Zhu, J.: Study of \(\gamma \)/\(\gamma ^{\prime } \) interfaces in nickel-based single-crystal superalloys by scanning transmission electron microscopy. Metall. Mater. Trans. A 42, 548–552 (2011)

    Article  Google Scholar 

  • Ge, B., Luo, Y., Li, J., Zhu, J., Tang, D., Gui, Z.: Study of \(\gamma /\gamma ^{\prime } \) interfacial width in a nickel-based superalloy by scanning transmission electron microscopy. PMagL 92, 541–546 (2012)

    ADS  Google Scholar 

  • Gu, L., Zhu, C., Li, H., Yu, Y., Li, C., Tsukimoto, S., Maier, J., Ikuhara, Y.: Direct observation of lithium staging in partially delithiated LiFePO\(_4\) at atomic resolution. J. Am. Chem. Soc. 133, 4661–4663 (2011)

    Article  Google Scholar 

  • Hanssen, K.J.: Contrast transfer of electron-microscope with partial coherent illumination: A ring condensor. Optik 33, 166–181 (1971)

    Google Scholar 

  • Haruta, M., Kurata, H., Komatsu, H., Shimakawa, Y., Isoda, S.: Effects of electron channeling in HAADF-STEM intensity in La\(_2\)CuSnO\(_6\). Ultramicroscopy 109, 361–367 (2009)

    Article  Google Scholar 

  • Howie, A.: Diffraction channelling of fast electrons and positrons in crystals. PMag 14, 223–237 (1966)

    ADS  Google Scholar 

  • Inada, H., Su, D., Egerton, R.F., Konno, M., Wu, L., Ciston, J., Wall, J., Zhu, Y.: Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms. Ultramicroscopy (2010)

    Google Scholar 

  • Ishizuka, K.: A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71–83 (2002)

    Article  Google Scholar 

  • Ishikawa, R., Okunishi, E., Sawada, H., Kondo, Y., Hosokawa, F., Abe, E.: Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10, 278–281 (2011)

    Article  ADS  Google Scholar 

  • James, E.M., Browning, N.D.: Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125–139 (1999)

    Article  Google Scholar 

  • Jia, C.L., Thus, A., Urban, K.: Atomic-scale analysis of the oxygen configuration at a SrTiO\(_3\) dislocation core. Phys. Rev. Lett. 95 (2005)

    Google Scholar 

  • Jia, C.L., Urban, K.: Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 2001–2004 (2004)

    Article  ADS  Google Scholar 

  • Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y., Ishizuka, K.: Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007)

    Article  ADS  Google Scholar 

  • Klenov, D.O., Findlay, S.D., Allen, L.J., Stemmer, S.: Influence of orientation on the contrast of high-angle annular dark-field images of silicon. Phys. Rev. B 76, 014111 (2007)

    Article  ADS  Google Scholar 

  • Komoda, T.: Electron microscopic observation of crystal lattices on level with atomic dimension. Jpn. J. Appl. Phys. 5, 603–607 (1966)

    Article  ADS  Google Scholar 

  • LeBeau, J.M., Findlay, S.D., Wang, X., Jacobson, A.J., Allen, L.J., Stemmer, S.: High-angle scattering of fast electrons from crystals containing heavy elements: simulation and experiment. Phys. Rev. B 79, 214110 (2009)

    Article  ADS  Google Scholar 

  • Lin, J.A., Cowley, J.M.: Calibration of the operating parameters for an HB5 stem instrument. Ultramicroscopy 19, 31–42 (1986)

    Article  Google Scholar 

  • Liu, J.: Scanning transmission electron microscopy of nanoparticles. In: Wang Z. (ed.) Characterization of nanophase materials, pp. 81–132 (2000)

    Google Scholar 

  • Mathews, W.W.: The use of hollow-cone illumination for increasing image contrast in microscopy. Trans. Am. Microsc. Soc. 42, 190–195 (1953)

    Article  Google Scholar 

  • Misell, D.L., Stroke, G.W., Halioua, M.: Coherent and incoherent imaging in scan-ning-transmission electron-microscope. J. Phys. D Appl. Phys. 7, L113–L117 (1974)

    Article  ADS  Google Scholar 

  • Mitome, M., Takayanagi, K., Tanishiro, Y.: Improvement of resolution by convergent-beam illumination in surface profile images of high resolution transmission electron microscopy. Ultramicroscopy 33, 255–260 (1990)

    Article  Google Scholar 

  • Mittal, A., Mkhoyan, K.A.: Limits in detecting an individual dopant atom embedded in a crystal. Ultramicroscopy 111, 1101–1110 (2011)

    Article  Google Scholar 

  • Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N., Krivanek, O.L.: Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)

    Article  ADS  Google Scholar 

  • Nellist, P.D.: The Principles of STEM Imaging, in: S.J., Pennycook, Nellist P.D. (eds.) Scanning Transmission Electron Microscopy: Imaging and Analysis, pp. 91–116. Springer, New York (2011b)

    Google Scholar 

  • Nellist, P.D.: The principles of STEM imaging. In: Pennycook, S.J., Nellist P.D. (eds.) Scanning Transmission Electron Microscopy: Imaging and Analysis. p. 92. Springer, New York (2011a)

    Google Scholar 

  • Nellist, P.D., Rodenburg, J.M.: Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy 54, 61–74 (1994)

    Article  Google Scholar 

  • Nellist, P.D., Cosgriff, E.C., Behan, G., Kirkland, A.I.: Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Microsc. Microanal. 14, 82–88 (2008)

    Article  ADS  Google Scholar 

  • Okunishi, E., Ishikawa, I., Sawada, H., Hosokawa, F., Hori, M., Kondo, Y.: Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. 15, 164–165 (2009)

    Article  ADS  Google Scholar 

  • Pennycook, S.J.: A scan through the history of STEM. In: Pennycook, S.J., Nellist, P.D. (eds.) Scanning Transmission Electron Microscopy: Imaging and Analysis, pp. 1–90. Springer, New York (2011)

    Chapter  Google Scholar 

  • Pennycook, S.J., Jesson, D.E., Chisholm, M.F., Browning, N.D., McGibbon, A.J., McGibbon, M.M.: Z-contrast imaging in the scanning transmission electron microscope. Microsc. Microanal. 1, 231–251 (1995)

    Article  ADS  Google Scholar 

  • Rose, H.: Phase-contrast in scanning-transmission electron-microscopy. Optik 39, 416–436 (1974)

    Google Scholar 

  • Rose, H.: Nonstandard imaging methods in electron-microscopy. Ultramicroscopy 2, 251–267 (1977)

    Article  Google Scholar 

  • Su, D., Zhu, Y.M.: Scanning moire fringe imaging by scanning transmission electron microscopy. Ultramicroscopy 110, 229–233 (2010)

    Article  Google Scholar 

  • Voyles, P.M., Grazul, J.L., Muller, D.A.: Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251–273 (2003)

    Article  Google Scholar 

  • Yamazaki, T., Kawasaki, M., Watanabe, K., Hashimoto, I., Shiojiri, M.: Artificial bright spots in atomic-resolution high-angle annular dark field STEM images. J. Electron Microsc. 50, 517–521 (2001)

    Article  Google Scholar 

  • Yu, Z., Muller, D.A., Silcox, J.: Study of strain fields at a-Si/c-Si interface. J. Appl. Phys. 95, 3362–3371 (2004)

    Article  ADS  Google Scholar 

  • Yu, Z., Muller, D.A., Silcox, J.: Effects of specimen tilt in ADF-STEM imaging of a-Si/c-Si interfaces. Ultramicroscopy 108, 494–501 (2008)

    Article  Google Scholar 

  • Zeitler, E., Thomson, M.G.R.: Scanning transmission electron microscopy 2. Optik 31, 359 (1970a)

    Google Scholar 

  • Zeitler, E., Thomson, M.G.R.: Scanning transmission electron microscopy 1. Optik 31, 258 (1970b)

    Google Scholar 

  • http://en.wikipedia.org/wiki/Snell’s_law

  • http://ncem.lbl.gov/TEAM-project/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghui Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Peking University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, B. (2018). Scanning Transmission Electron Microscopy (STEM). In: Wang, R., Wang, C., Zhang, H., Tao, J., Bai, X. (eds) Progress in Nanoscale Characterization and Manipulation. Springer Tracts in Modern Physics, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-13-0454-5_4

Download citation

Publish with us

Policies and ethics