Skip to main content

Biomimetic Scaffolds for Bone Tissue Engineering

  • Chapter
  • First Online:
Biomimetic Medical Materials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1064))

Abstract

The use of biomimetic scaffolds for bone tissue engineering has been studied for a long time. Biomimetic scaffolds can assist and accelerate bone regeneration that is similar to that of authentic tissue, which represents the environment of cells in a living organism. Currently, numerous biomaterials have been reported for use as a biomimetic scaffold. This review focuses on the design of biomimetic scaffolds, kinds of biomaterials and methods used to fabricate biomimetic scaffolds, growth factors used with biomimetic scaffold for bone regeneration, mobilization of biological agents into biomimetic scaffolds, and studies on (pre)clinical bone regeneration from biomimetic scaffolds. Then, future prospects for biomimetic scaffolds are discussed.

Joon Yeong Park and Seung Hun Park are equal first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamodt JM, Grainger DW (2016) Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86:68–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn JH, Lee TH, Oh JS, Kim SY, Kim HJ, Park IK, Choi BS, Im GI (2009) Novel hyaluronate-atelocollagen/beta-TCP-hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits. Tissue Eng Part A 15:2595–2604

    Article  CAS  PubMed  Google Scholar 

  • Armitage OE, Oyen ML (2015) Hard-soft tissue interface engineering. Adv Exp Med Biol 881:187–204

    Article  CAS  PubMed  Google Scholar 

  • Barabaschi GD, Manoharan V, Li Q, Bertassoni LE (2015) Engineering pre-vascularized scaffolds for bone regeneration. Adv Exp Med Biol 881:79–94

    Article  CAS  PubMed  Google Scholar 

  • Behzadi S, Luther GA, Harris MB, Farokhzad OC, Mahmoudi M (2017) Nanomedicine for safe healing of bone trauma: opportunities and challenges. Biomaterials 146:168–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2:81–96

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar S, Lim S (2017) Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater 9:e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceafalan LC, Popescu BO (2016) Juxtacerebral tissue regeneration potential: telocytes contribution. Adv Exp Med Biol 913:397–402

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793–4805

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Shyu VB, Chen JP, Lee MY (2014) Selective laser sintered poly-epilson-carprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication 6:015004

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2016) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 20:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J (2013) Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 24:297–310

    Article  CAS  PubMed  Google Scholar 

  • Chua ILS, Kim HW, Lee JH (2016) Signaling of extracellular matrices for tissue regeneration and therapeutics. Tissue Eng Regen Med 13:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia C, Bhumiratana S, Yan LP, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8:2483–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia CR, Reis RL, Mano JF (2015) Multiphasic, multistructured and hierarchical strategies for cartilage regeneration. Adv Exp Med Biol 881:143–160

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Wang Q, Chen G, Zhou S, Chang Q, Zuo Q, Ren K, Fan W (2011) Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J Biosci Bioeng 111:493–500

    Article  CAS  PubMed  Google Scholar 

  • Da H, Jia SJ, Meng GL, Cheng JH, Zhou W, Xiong Z, Mu YJ, Liu J (2013) The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS ONE 8:e54838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinh T, Braunagel S, Rosenblum BI (2015) Growth factors in wound healing. the present and the future? Clin Podiatr Med Surg 32:109–119

    Article  PubMed  Google Scholar 

  • Domingues RM, Chiera S, Gershovich P, Motta A, Reis RL, Gomes ME (2016) Enhancing the biomechanical performance of anisotropic nanofibrous scaffolds in tendon tissue engineering: reinforcement with cellulose nanocrystals. Adv Healthc Mater 5:1364–1375

    Article  CAS  PubMed  Google Scholar 

  • Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    Article  CAS  PubMed  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  • Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and b-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065–4073

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Guan J (2016) Antifibrotic therapies to control cardiac fibrosis. Biomater Res 20:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foroughi MR, Karbasi S, Ebrahimi-Kahrizsangi R (2012) Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline hydroxyapatite scaffold for bone tissue engineering. J Porous Mater 19:667–675

    Article  CAS  Google Scholar 

  • Frezzo JA, Montclare JK (2016) Natural composite systems for bioinspired materials. Adv Exp Med Biol 940:143–166

    Article  CAS  PubMed  Google Scholar 

  • Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C, Hofmann A, Motta A, Migliaresi C, Kirkpatrick CJ (2009) Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30:1329–1338

    Article  CAS  PubMed  Google Scholar 

  • Gentile P, Ferreira AM, Callaghan JT, Miller CA, Atkinson J, Freeman C, Hatton PV (2017) Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Adv Healthc Mater. https://doi.org/10.1002/adhm.20160118

  • Gervaso F, Scalera F, Padmanabhan SK, Licciulli A, Deponti D, Giancamillo AD, Domeneghini C, Peretti GM, Sannino A (2012) Development and mechanical characterization of a collagen/hydroxyapatite bilayered scaffold for osteochondral defect replacement. Key Eng Mater 493:890–895

    Google Scholar 

  • Ghazanfari S, Khademhosseini A, Smit TH (2016) Mechanisms of lamellar collagen formation in connective tissues. Biomaterials 97:74–84

    Article  CAS  PubMed  Google Scholar 

  • Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T, Breusch SJ (2006) An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials 27:3387–3395

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z, Tang S, Liu K, Quan D (2006) Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater 1:206–215

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Lyne DV, Barragan M, Berkland CJ, Detamore MS (2016) Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration. J Mater Sci Mater Med 27:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han SH, Kim YH, Park MS, Kim IA, Shin JW, Yang WI, Jee KS, Park KD, Ryu GH, Lee JW (2008) Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. J Biomed Mater Res A 87:850–861

    Article  PubMed  CAS  Google Scholar 

  • He JX, Tan WL, Han QM, Cui SZ, Shao W, Sang F (2016) Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci 51:4399–4410

    Article  CAS  Google Scholar 

  • Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 32:9622–9629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Ten E, Liu G, Finzen M, Yu W, Lee JS, Saiz E, Tomsia AP (2013) Biocomposites of pHEMA with HA/beta-TCP (60/40) for bone tissue engineering: Swelling, hydrolytic degradation, and in vitro behavior. Polymer 54:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh J, Lee J, Kim W, Yeo M, Kim G (2017) Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, Khan MA, Rahman MM (2015) Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties. Mater Sci Eng C Mater Biol Appl 49:648–655

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Park SH, Park JH, Lee BK, Yun JH, Lee B, Kim JH, Min BH, Kim MS (2016) In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel. Macromol Biosci 16:1158–1169

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Quan C, Liu B, Jiang Q, Zhang C (2016) A mini review on the functional biomaterials based on poly(lactic acid) stereocomplex. Polym Rev 56:262–286

    Article  CAS  Google Scholar 

  • Kashte S, Jaiswal AK, Kadam S (2017) Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med 14:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemppainen JM, Hollister SJ (2010) Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J Biomed Mater Res A 94:9–18

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Kim JH, Min BH, Chun HJ, Han DK, Lee HB (2011) Polymeric scaffolds for regenerative medicine. Polym Rev 51:1–30

    Article  CAS  Google Scholar 

  • Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS (2015) Injectable in situ-forming hydrogels for regenerative medicines. Polym Rev 55:407–452

    Article  CAS  Google Scholar 

  • Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G, Martin I, Marcacci M (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koupaei N, Karkhaneh A (2016) Porous crosslinked polycaprolactone hydroxyapatite networks for bone tissue engineering. Tissue Eng Regen Med 13:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon DY, Kwon JS, Park SH, Park JH, Jang SH, Yin XY, Yun JH, Kim JH, Min BH, Lee JH, Kim WD, Kim MS (2015) A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci Rep 5:12721

    Article  CAS  PubMed  Google Scholar 

  • Kwon DY, Park JH, Jang SH, Park JY, Jang JW, Min BH, Kim WD, Lee HB, Lee J, Kim MS (2017) Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2532

    Article  PubMed  CAS  Google Scholar 

  • Lee P, Manoukian OS, Zhou G, Wang Y, Chang W, Yu X, Kumbar SG (2016) Osteochondral scaffold combined with aligned nanofibrous scaffolds for cartilage regeneration. RSC Adv 6:72246

    Article  CAS  Google Scholar 

  • Lee BH, Shirahama H, Kim MH, Lee JH, Cho NJ, Tan LP (2017a) Colloidal templating of highly ordered gelatin methacryloyl-based hydrogel platforms for three-dimensional tissue analogues. NPG Asia Mater 9:e412

    Article  CAS  Google Scholar 

  • Lee H, Liao JD, Sivashanmugan K, Liu BH, Su YH, Yao CK, Juang YD (2017b) Hydrothermal fabrication of highly porous titanium bio-scaffold with a load-bearable property. Materials 10:e726

    Article  PubMed  CAS  Google Scholar 

  • Lee WK, Lim YY, Leow AT, Namasivayam P, Ong Abdullah J, Ho CL (2017c) Biosynthesis of agar in red seaweeds: a review. Carbohydr Polym 164:23–30

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater 8:e265

    Article  CAS  Google Scholar 

  • Lin YJ, Huang CC, Wan WL, Chiang CH, Chang Y, Sung HW (2017) Recent advances in CO2 bubble-generating carrier systems for localized controlled release. Biomaterials 133:154–164

    Article  CAS  PubMed  Google Scholar 

  • Makhni MC, Caldwell JM, Saifi C, Fischer CR, Lehman RA, Lenke LG, Lee FY (2016) Tissue engineering advances in spine surgery. Regen Med 11:211–222

    Article  CAS  PubMed  Google Scholar 

  • Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R (2005) Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res 8:277–284

    Article  CAS  PubMed  Google Scholar 

  • Mitsak AG, Kemppainen JM, Harris MT, Hollister SJ (2011) Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. Tissue Eng Part A 17:1831–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeinzadeh S, Jabbari E (2015) Morphogenic peptides in regeneration of load bearing tissues. Adv Exp Med Biol 881:95–110

    Article  CAS  PubMed  Google Scholar 

  • Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188

    Article  CAS  PubMed  Google Scholar 

  • Monteiro N, Yelick PC (2017) Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 11:2443–2461

    Article  CAS  PubMed  Google Scholar 

  • Nanditha S, Chandrasekaran B, Muthusamy S, Muthu K (2017) Apprising the diverse facets of platelet rich fibrin in surgery through a systematic review. Int J Surg 46:186–194

    Article  CAS  PubMed  Google Scholar 

  • Nie H, Ho ML, Wang CK, Wang CH, Fu YC (2009) BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials 30:892–901

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Park KH (2016) Light enhanced bone regeneration in an athymic nude mouse implanted with mesenchymal stem cells embedded in PLGA microspheres. Biomater Res 20:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park SH, Kwon JS, Lee BS, Park JH, Lee BK, Yun JH, Lee BY, Kim JH, Min BH, Yoo TH, Kim MS (2017) BMP2-immobilized injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep 7:6603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinel CB, Pluhar GE (2012) Clinical application of recombinant human bone morphogenetic protein in cats and dogs: a review of 13 cases. Can Vet J 53:767–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Re’em T, Witte F, Willbold E, Ruvinov E, Cohen S (2012) Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8:3283–3293

    Article  PubMed  CAS  Google Scholar 

  • Sánchez M, Anitua E, Delgado D, Sanchez P, Prado R, Orive G, Padilla S (2017) Platelet-rich plasma, a source of autologous growth factors and biomimetic scaffold for peripheral nerve regeneration. Expert Opin Biol Ther 17:197–212

    Article  PubMed  CAS  Google Scholar 

  • Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70:101–111

    Article  CAS  PubMed  Google Scholar 

  • Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi MAMA, Almazyadi HAM, Kallmeyer K, Dandara C, Pepper MS, Parker MI, Dzobo K (2017) The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci 18:e1586

    Article  PubMed  CAS  Google Scholar 

  • Shao X, Goh JC, Hutmacher DW, Lee EH, Zigang G (2006) Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 12:1539–1551

    Article  CAS  PubMed  Google Scholar 

  • Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M (2017) Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 21:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh D, Singh D, Zo S, Han SS (2014) Nano-biomimetics for nano/micro tissue regeneration. J Biomed Nanotechnol 10:3141–3161

    Article  CAS  PubMed  Google Scholar 

  • Skylar-Scott MA, Liu MC, Wu Y, Dixit A, Yanik MF (2016) Guided homing of cells in multi-photon microfabricated bioscaffolds. Adv Healthc Mater 5:1233–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BT, Shum J, Wong M, Mikos AG, Young S (2015) Bone tissue engineering challenges in oral and maxillofacial surgery. Adv Exp Med Biol 881:57–78

    Article  CAS  PubMed  Google Scholar 

  • Tatman PD, Gerull W, Sweeney-Easter S, Davis JI, Gee AO, Kim DH (2015) Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches. Tissue Eng Part B Rev 21:543–559

    Article  PubMed  Google Scholar 

  • Tracy CJ, Sanders DN, Bryan JN, Jensen CA, Castaner LJ, Kirk MD, Katz ML (2016) Intravitreal implantation of genetically modified autologous bone marrow-derived stem cells for treating retinal disorders. Adv Exp Med Biol 854:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Diver C, Bártolo P (2016) Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9:992

    Article  PubMed Central  CAS  Google Scholar 

  • Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S (2017) Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater 9:e435

    Article  CAS  Google Scholar 

  • Wongwitwichot P, Kaewsrichan J, Chua KH, Ruszymah BH (2010) Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity. Open Biomed Eng J 4:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Liu C, O’Neil B, Wei J, Ngothai Y (2012) Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Appl Surf Sci 258:7589–7595

    Article  CAS  Google Scholar 

  • Xu R, Taskin MB, Rubert M, Seliktar D, Besenbacher F, Chen M (2015) hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold. Sci Rep 5:8480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Kang J, Li W, Liu J, Xie R, Wang Y, Liu S, Wang DA, Ren L (2017) Novel beta-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Biomed Mater. https://doi.org/10.1088/1748-605X/aa8541

    Article  PubMed  Google Scholar 

  • Yin L, Yuvienco C, Montclare JK (2017) Protein based therapeutic delivery agents: contemporary developments and challenges. Biomaterials 134:91–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9:7236–7247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from a Basic Science Research Program (2016R1A2B3007448) and Priority Research Centers Program (2010-0028294) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Suk Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, J.Y., Park, S.H., Kim, M.G., Park, SH., Yoo, T.H., Kim, M.S. (2018). Biomimetic Scaffolds for Bone Tissue Engineering. In: Noh, I. (eds) Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, vol 1064. Springer, Singapore. https://doi.org/10.1007/978-981-13-0445-3_7

Download citation

Publish with us

Policies and ethics