Skip to main content

Current Status of Development and Intellectual Properties of Biomimetic Medical Materials

  • Chapter
  • First Online:
Biomimetic Medical Materials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1064))

Abstract

Biomimetic medical materials are the biomaterials which mimic the important characteristic features of natural material/tissue structures or architectures and are mainly used in biomedical field for their applications in tissue regeneration, medical devices, biosensors and drug delivery. It is one of the leading research topics which have the ability to replace the existing biomaterials and medical devices and to development new biomaterials. The innovation and development in this research area are growing quickly because of the state-of-the-art techniques like nanobiotechnology, biosensors, tissue engineering and regenerative medicine, and 3D (bio)printing. These techniques can mimic the biomacromolecules, peptide sequences, morphology, chemical and physical structures more precisely than other currently available methods. The importance of hydrogels and its composites as examples among many other biomaterials are increasing vastly because of their recent advancements in its biological, chemical and physical cues which are biomimetic to native tissues. Furthermore, an enhancement in the 3D bioprinting technology where live cells are printed along with biomaterials demonstrates the capabilities of this technology to innovate novel tissue engineering products in micro- to macro-technology. The recent trends of development and intellectual properties related to biomimetic medical materials along with their perspectives and area of scope are discussed by focusing on 3D bioprinting in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidi N, Hu Y, Texas Tech University System (2016) Cotton fiber dissolution and regeneration and 3D printing of cellulose based conductive composites. U.S. Patent Application 15/355,480

    Google Scholar 

  • Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88

    Article  CAS  PubMed  Google Scholar 

  • Akintewe OO, Roberts EG, Rim NG, Ferguson MA, Wong JY (2017) Design approaches to myocardial and vascular tissue engineering. Annu Rev Biomed Eng 19(0):389

    Article  CAS  PubMed  Google Scholar 

  • Alas GR, Agarwal R, Collard DM, García AJ (2017) Peptide-functionalized poly [oligo (ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion. Acta Biomater 59:108–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6(10):4034–4041

    Article  CAS  PubMed  Google Scholar 

  • Andrade FK, Silva JP, Carvalho M, Castanheira E, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res A 98((4):554–566

    Article  CAS  Google Scholar 

  • Anil M, Ayyildiz-Tamis D, Tasdemir S, Sendemir-Urkmez A, Gulce-Iz S (2016) Bioinspired materials and biocompatibility. In: Emerging research on bioinspired materials engineering. IGI Global, Hershey, pp 296–324

    Google Scholar 

  • Atala A, Richardson K (2016) The quest to 3D print body parts. http://www.biochemist.org/bio/03804/0024/038040024.pdf. Accessed on 10 Oct 2017

  • Bang SM, Das D, Yun J, Noh I (2017) Evaluation of MC3T3 cells proliferation and drug release study from sodium hyaluronate-BDDGE patterned gel. Nanomaterials 7(10):328–346

    Article  PubMed Central  CAS  Google Scholar 

  • Bao R, Tan B, Liang S, Zhang N, Wang W, Liu W (2017) A Ï€-Ï€ conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterials 122:63–71

    Article  CAS  PubMed  Google Scholar 

  • Bertassoni LE (2017) Dentin on the nanoscale: hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater 33:637

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A (2014) Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6(2):024105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10(4):1646–1662

    Article  CAS  PubMed  Google Scholar 

  • Bodhak S, Bose S, Bandyopadhyay A (2016) Surface modification and electro-thermal polarisation for bone tissue engineering. In: Electrically active materials for medical devices. World Scientific, Hackensack, pp 103–114

    Chapter  Google Scholar 

  • Busetti A, Maggs CA, Gilmore BF (2017) Marine macroalgae and their associated microbiomes as a source of antimicrobial chemical diversity. Eur J Phycol 52(4):452–465

    Article  CAS  Google Scholar 

  • Cardoso VF, Lopes AC, Botelho G, Lanceros-Méndez S (2015) Poly (vinylidene fluoride-trifluoroethylene) porous films: tailoring microstructure and physical properties by solvent casting strategies. Soft Mater 13(4):243–253

    Article  CAS  Google Scholar 

  • Cha SH, Lee JJ, Koh WG (2017) Study of myoblast differentiation using multi-dimensional scaffolds consisting of nano and micropatterns. Biomater Res 21:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8(16):10070–10087

    Article  CAS  PubMed  Google Scholar 

  • Chavarria AM, Aguilar JP, Queen Mary University of London (2017) Method for manufacturing a three-dimensional biomimetic scaffold and uses thereof. U.S. Patent 9,631,172

    Google Scholar 

  • Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2016) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 20(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung WJ, Oh JW, Kwak K, Lee BY, Meyer J, Wang E, Hexemer A, Lee SW (2011) Biomimetic self-templating supramolecular structures. Nature 478(7369):364–368

    Article  CAS  PubMed  Google Scholar 

  • Corradetti B, Weiner BK, Tasciottia E (2016) Biomimetic nanostructured platforms for biologically inspired medicine. In: Bio-inspired regenerative medicine: materials, processes, and clinical applications, vol 21. Pan Stanford Publishing, Singapore

    Google Scholar 

  • Correia DM, Gonçalves R, Ribeiro C, Sencadas V, Botelho G, Ribelles JG, Lanceros-Méndez S (2014) Electrosprayed poly (vinylidene fluoride) microparticles for tissue engineering applications. RSC Adv 4(62):33013–33021

    Article  CAS  Google Scholar 

  • Correia DM, Ribeiro C, Sencadas V, Vikingsson L, Gasch MO, Ribelles JG, Botelho G, Lanceros-Méndez S (2016) Strategies for the development of three dimensional scaffolds from piezoelectric poly (vinylidene fluoride). Mater Des 92:674–681

    Article  CAS  Google Scholar 

  • Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing. Biomaterials 30(31):6221–6227

    Article  CAS  PubMed  Google Scholar 

  • da Silva Bartolo PJ (ed) (2011) Innovative developments in virtual and physical prototyping: proceedings of the 5th international conference on advanced research in virtual and rapid prototyping, Leiria, Portugal, CRC Press

    Google Scholar 

  • Da Silva RM, Mano JF, Reis RL (2007) Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol 25(12):577–583

    Article  PubMed  CAS  Google Scholar 

  • Damaraju SM, Shen Y, Elele E, Khusid B, Eshghinejad A, Li J, Jaffe M, Arinzeh TL (2017) Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials 149:51–62

    Article  CAS  PubMed  Google Scholar 

  • Das D, Bang SM, Zhang SM, Noh I (2017a) Biomolecules release and cell responses of alginate-α-tricalcium phosphate hybrid gel. Nanomaterials 7:389. https://doi.org/10.3390/nano7110389,2017-11-13

  • Das D, Zhang SM, Noh I (2017b) Synthesis and characterizations of alginate-α-tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as biomaterials. Biomed Mater. Online

    Google Scholar 

  • Dasi LP, Grande-Allen J, Kunzelman K, Kuhl E (2017) The pursuit of engineering the ideal heart valve replacement or repair: a special issue of the annals of biomedical engineering. Ann Biomed Eng 45(2):307–309

    Article  PubMed  Google Scholar 

  • Delaviz H, Faghihi A, Delshad AA, Hadi Bahadori M, Mohamadi J, Roozbehi A (2011) Repair of peripheral nerve defects using a polyvinylidene fluoride channel containing nerve growth factor and collagen gel in adult rats. Cell J 13(3):137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demirel MC, Cetinkaya M, Pena-Francesch A, Jung H (2015) Recent advances in nanoscale bioinspired materials. Macromol Biosci 15(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • DeVolder RJ, Seo YB, Kong HJ (2017) Proangiogenic alginate-g-pyrrole hydrogel with decoupled control of mechanical rigidity and electrically conductivity. Biomater Res 21:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donnelly H, Dalby MJ, Salmeron-Sanchez M, Sweeten PE (2017) Current approaches for modulation of the nanoscale interface in the regulation of cell behaviour. Nanomed Nanotechnol Biol Med. In Press

    Google Scholar 

  • Duan B (2017) State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng 45(1):195–209

    Article  PubMed  Google Scholar 

  • Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101(5):1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846

    Article  CAS  PubMed  Google Scholar 

  • Esmond RW (2016) Bioprinting: the patent landscape, available from: https://www.pharmafocusasia.com/strategy/bioprinting. Accessed on 01 Nov 2017

  • Favi PM, Ospina SP, Kachole M, Gao M, Atehortua L, Webster TJ (2016) Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose 23(2):1263–1282

    Article  CAS  Google Scholar 

  • Forgacs G, Colbert SH, Hubbard BA, Marga F, Christiansen D, The Curators of The University of Missouri (2014) Engineered biological nerve graft, fabrication and application thereof. U.S. Patent 8,747,880

    Google Scholar 

  • Forgacs G, Marga FS, Norotte C, The Curators of The University of Missouri (2017) Self-assembling multicellular bodies and methods of producing a three-dimensional biological structure using the same. U.S. Patent 9,556,415

    Google Scholar 

  • Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(24):4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frueh FS, Menger MD, Lindenblatt N, Giovanoli P, Laschke MW (2017) Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol 37(5):613–625

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Xu M, Jia C, Xie W, Wang L, Kong D, Wang H (2016) Differential regulation of skin fibroblasts for their TGF-β1-dependent wound healing activities by biomimetic nanofibers. J Mater Chem B 4(31):5246–5255

    Article  CAS  PubMed  Google Scholar 

  • Fujii M, Yamanouchi K, Sakai Y, Baimakhanov Z, Yamaguchi I, Soyama A, Hidaka M, Takatsuki M, Kuroki T, Eguchi S (2017) In vivo construction of liver tissue by implantation of a hepatic non-parenchymal/adipose-derived stem cell sheet. J Tissue Eng Regen Med 12:e287. https://doi.org/10.1002/term.2424

    Article  CAS  PubMed  Google Scholar 

  • Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10(2):99–107

    Article  Google Scholar 

  • Gao L, Kupfer M, Jung J, Yang L, Zhang P, Sie Y, Tran Q, Ajeti V, Freeman B, Fast V, Campagnola P (2017) Myocardial tissue engineering with cells derived from human induced-pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res, CIRCRESAHA-116 120:1318. https://doi.org/10.1161/CIRCRESAHA.116.310277

    Article  CAS  Google Scholar 

  • Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat Mater 15(4):413–418

    Article  PubMed  CAS  Google Scholar 

  • Goncalves S, Rodrigues IP, Padrão J, Silva JP, Sencadas V, Lanceros-Mendez S, Girão H, Gama FM, Dourado F, Rodrigues LR (2016) Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf B Biointerfaces 139:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gopinathan J, Mano S, Elakkiya V, Pillai MM, Sahanand KS, Rai BD, Selvakumar R, Bhattacharyya A (2015) Biomolecule incorporated poly-ε-caprolactone nanofibrous scaffolds for enhanced human meniscal cell attachment and proliferation. RSC Adv 5(90):73552–73561

    Article  CAS  Google Scholar 

  • Gopinathan J, Pillai MM, Elakkiya V, Selvakumar R, Bhattacharyya A (2016a) Carbon nanofillers incorporated electrically conducting poly ε-caprolactone nanocomposite films and their biocompatibility studies using MG-63 cell line. Poly Bull 73(4):1037–1053

    Article  CAS  Google Scholar 

  • Gopinathan J, Quigley AF, Bhattacharyya A, Padhye R, Kapsa RM, Nayak R, Shanks RA, Houshyar S (2016b) Preparation, characterisation, and in vitro evaluation of electrically conducting poly (É›-caprolactone)-based nanocomposite scaffolds using PC12 cells. J Biomed Mater Res A 104(4):853–865

    Article  CAS  PubMed  Google Scholar 

  • Gopinathan J, Pillai MM, Sahanand KS, Rai BD, Selvakumar R, Bhattacharyya A (2017) Synergistic effect of electrical conductivity and biomolecules on human meniscal cell attachment, growth, and proliferation in poly-ε-caprolactone nanocomposite scaffolds. Biomed Mater 12(6):065001

    Article  CAS  PubMed  Google Scholar 

  • Gorodzha SN, Muslimov AR, Syromotina DS, Timin AS, Tcvetkov NY, Lepik KV, Petrova AV, Surmeneva MA, Gorin DA, Sukhorukov GB, Surmenev RA (2017) A comparison study between electrospun polycaprolactone and piezoelectric poly (3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 160:48–59

    Article  CAS  PubMed  Google Scholar 

  • Green JJ, Elisseeff JH (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540(7633):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halperin-Sternfeld M, Ghosh M, Adler-Abramovich L (2017) Advantages of self-assembled supramolecular polymers toward biological applications. In: Supramolecular chemistry of biomimetic systems. Springer, Singapore, pp 9–35

    Chapter  Google Scholar 

  • Hauser C, Loo Y, Agency for Science (2014) Novel ultrashort hydrophobic peptides that self-assemble into nanofibrous hydrogels and their uses. U.S. Patent Application 15/039,922

    Google Scholar 

  • Hauser C, Seow WY, Agency for Science (2017) Building stratified biomimetic tissues and organs using crosslinked ultrashort peptide hydrogel membranes. U.S. Patent 9,687,591

    Google Scholar 

  • He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J (2016) Research on the printability of hydrogels in 3D bioprinting. Sci Rep 6:29977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksson I, Gatenholm P, Hägg DA (2017) Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds. Biofabrication 9(1):015022

    Article  CAS  PubMed  Google Scholar 

  • Higashi N, Hirata A, Nishimura SN, Koga T (2017) Thermo-responsive polymer brushes on glass plate prepared from a new class of amino acid-derived vinyl monomers and their applications in cell-sheet engineering. Colloids Surf B Biointerfaces 159:39–46

    Article  CAS  PubMed  Google Scholar 

  • Hornick JF, Rajan K (2015) Chapter 16: intellectual property in 3D printing and nanotechnology. In: Zhang LG, Fisher JP, Leong K (eds) 3D Bioprinting and nanotechnology in tissue engineering and regenerative medicine. Academic Press, Amsterdam, pp 349–364 ISBN: 978-0-12-800547-7

    Chapter  Google Scholar 

  • Hornick JF, Rajan K (2016) The 3D bioprinting patent landscape takes shape as IP leaders emerge available from: https://3dprintingindustry.com/news/3d-bioprinting-patent-landscape-takes-shape-ip-leaders-emerge-84541

  • Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239

    Article  CAS  PubMed  Google Scholar 

  • Hsu MN, Liao HT, Li KC, Chen HH, Yen TC, Makarevich P, Parfyonova Y, Hu YC (2017) Adipose-derived stem cell sheets functionalized by hybrid baculovirus for prolonged GDNF expression and improved nerve regeneration. Biomaterials 140:189–200

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, CÄ—pla V, He C, Edin J, Rakickas T, Kobuch K, RuželÄ— Ž, Jackson WB, Rafat M, Lohmann CP, Valiokas R (2015) Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater 12:70–80

    Article  CAS  Google Scholar 

  • Jabbari E, Kim DH, Lee LP (eds) (2014) Handbook of biomimetics and bioinspiration: biologically-driven engineering of materials, processes, devices, and systems. World Scientific, Hackensack

    Google Scholar 

  • Jaikumar D, Sajesh KM, Soumya S, Nimal TR, Chennazhi KP, Nair SV, Jayakumar R (2015) Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol 74:318–326

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Niu D, Liu H, Wang C, Zhao T, Yin L, Shi Y, Chen B, Ding Y, Lu B (2014) Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv Funct Mater 24(48):7598–7604

    Article  CAS  Google Scholar 

  • Jin Y, Liu C, Chai W, Compaan AM, Huang Y (2017) Self-supporting Nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air. ACS Appl Mater Interfaces 9(20):17456–17465

    Article  CAS  PubMed  Google Scholar 

  • Jonelle ZY, Korkmaz E, Berg MI, LeDuc PR, Ozdoganlar OB (2017) Biomimetic scaffolds with three-dimensional undulated microtopographies. Biomaterials 128:109–120

    Article  CAS  Google Scholar 

  • Jung CS, Kim BK, Lee J, Min BH, Park SH (2018) Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med 15(2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Funakoshi S, Yoshida Y, Yamanaka S, Shimizu T, Okano T, Daimon T (2017) Enhanced therapeutic effects of human iPS cell derived-cardiomyocyte by combined cell-sheets with omental flap technique in porcine ischemic cardiomyopathy model. Sci Rep 7:8824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kesti M, Eberhardt C, Pagliccia G, Kenkel D, Grande D, Boss A, Zenobi-Wong M (2015) Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater 25(48):7406–7417

    Article  Google Scholar 

  • Kharaziha M, Nikkhah M, Shin SR, Annabi N, Masoumi N, Gaharwar AK, Camci-Unal G, Khademhosseini A (2013) PGS: gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34(27):6355–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatiwala C, Murphy K, Shepherd B, Organovo, Inc. (2011a) Multilayered vascular tubes, GB 2478801 B, https://search.wellspringsoftware.net/patent/GB2478801B, referring also published as: AU2011227282B2, CA2793205C, CN102883680B, CN105749349A, EP02547288A2, GB2489081B, HK1159682A1, mJP2016052527A

  • Khatiwala C, Murphy K, Shepherd B, Organovo, Inc. (2011b) Multilayered vascular tubes. U.S. Patent Application 13/634,863

    Google Scholar 

  • Kim JE, Kim SH, Jung Y (2016) Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng Regen Med 13(6):636–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi J, Akiyama Y, Yamato M, Okano T (2016) November. ECM-mimicking thermoresponsive surface for manipulating hepatocyte sheets with maintenance of hepatic functions. In micro-Nanomechatronics and human science (MHS), 2016 international symposium on IEEE, pp 1–4

    Google Scholar 

  • Kupecz A, Roox K, Dekoninck C, Schertenleib D, Stief M, Sanna F, Orsingher M, Miralles S, Molina E, Crosse T, Gilbert M (2015) Safe harbors in Europe: an update on the research and Bolar exemptions to patent infringement. Nat Biotech 33(7):710–715

    Article  CAS  Google Scholar 

  • Kwee BJ, Mooney DJ (2017) Biomaterials for skeletal muscle tissue engineering. Curr Opin Biotechnol 47:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laing S, Suriano R, Lamprou DA, Smith CA, Dalby MJ, Mabbott S, Faulds K, Graham D (2016) Thermoresponsive polymer micropatterns fabricated by dip-pen nanolithography for a highly controllable substrate with potential cellular applications. ACS Appl Mater Interfaces 8(37):24844–24852

    Article  CAS  PubMed  Google Scholar 

  • Leckart S (2013) How 3-D printing body parts will revolutionize medicine, popular science, available from: https://www.popsci.com/science/article/2013-07/how-3-d-printing-body-parts-will-revolutionize-medicine. Accessed on 01 Nov 2017

  • Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P (2013) Design and fabrication of human skin by three-dimensional bioprinting. Tis Eng Part C: Methods 20(6):473–484

    Article  CAS  Google Scholar 

  • Lee J, Kim KE, Bang B, Noh I, Lee C (2017) A desktop multi-material 3D bio-printing system with open-source hardware and software. Int J Precis Eng Manuf 18(4):605–612

    Article  Google Scholar 

  • Levy D (2006) An artificial cornea is in sight, thanks to biomimetic hydrogels. Stanford report. http://news.stanford.edu/news/2006/september13/cornea-091306.html

  • Li H, Tan YJ, Leong KF, Li L (2017a) 3D bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding. ACS Appl Mater Interfaces 9(23):20086–20097

    Article  CAS  PubMed  Google Scholar 

  • Li R, Xu J, Wong DSH, Li J, Zhao P, Bian L (2017b) Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/β-catenin signaling. Biomaterials 145:33–43

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Liu Y, Wang S, Zhang R (2017) Composite poly (lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering. Int J Biol Macromol 103:1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Llopis-Hernández V, Cantini M, González-García C, Cheng ZA, Yang J, Tsimbouri PM, García AJ, Dalby MJ, Salmerón-Sánchez M (2016) Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Sci Adv 2(8):e1600188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long T, Zhu Z, Awad HA, Schwarz EM, Hilton MJ, Dong Y (2014) The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials 35(9):2752–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotech Adv 34(4):422–434

    Article  CAS  Google Scholar 

  • Marino A, Genchi GG, Mattoli V, Ciofani G (2017) Piezoelectric nanotransducers: the future of neural stimulation. Nano Today 14:9–12

    Article  CAS  Google Scholar 

  • Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Méndez S (2013) Effect of poling state and morphology of piezoelectric poly (vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 3(39):17938–17944

    Article  CAS  Google Scholar 

  • Matsumoto M, Umeda Y, Masui K, Fukushige S (eds) (2012) Design for innovative value towards a sustainable society: proceedings of ecodesign 2011: 7th international symposium on environmentally conscious design and inverse manufacturing. Springer Science & Business Media

    Google Scholar 

  • Matsuura K, Utoh R, Nagase K, Okano T (2014) Cell sheet approach for tissue engineering and regenerative medicine. J Control Release 190:228–239

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Fu X, Ni Y, Sun J, Li Z (2017) Biomimetic polypeptides with reversible pH-dependent thermal responsive property. Polymer 118:173–179

    Article  CAS  Google Scholar 

  • Minardi S, Sandri M, Martinez JO, Yazdi IK, Liu X, Ferrari M, Weiner BK, Tampieri A, Tasciotti E (2014) Multiscale patterning of a biomimetic scaffold integrated with composite microspheres. Small 10(19):3943–3953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minssen T, Mimler M (2017) Patenting bioprinting-technologies in the US and Europe–the 5th element in the 3rd dimension. Chapter 7. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2946209

  • Mironov VA, Khesuani YD, Mitryashkin AN, Gladkaya IS, Ostrovsky AY, Novoselov SV, Private Institution Lab For Biotechnological Research 3D Bioprinting Solutions (2015) Device and methods for printing biological tissues and organs. U.S. Patent Application 15/311,242

    Google Scholar 

  • Mitchell AC, Briquez PS, Hubbell JA, Cochran JR (2016) Engineering growth factors for regenerative medicine applications. Acta Biomater 30:1–2

    Article  CAS  PubMed  Google Scholar 

  • Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188

    Article  CAS  PubMed  Google Scholar 

  • Morris AH, Stamer DK, Kyriakides TR (2017) The host response to naturally-derived extracellular matrix biomaterials. In: Seminars in immunology, vol 29. Academic Press, London, p 72

    Google Scholar 

  • Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10(3):034002

    Article  PubMed  CAS  Google Scholar 

  • Mota C, Labardi M, Trombi L, Astolfi L, D'Acunto M, Puppi D, Gallone G, Chiellini F, Berrettini S, Bruschini L, Danti S (2017) Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation. Mater Des 122:206–219

    Article  CAS  Google Scholar 

  • Naleway SE, Porter MM, McKittrick J, Meyers MA (2015) Structural design elements in biological materials: application to bioinspiration. Adv Mater 27(37):5455–5476

    Article  CAS  PubMed  Google Scholar 

  • Ngandu Mpoyi E, Cantini M, Reynolds PM, Gadegaard N, Dalby MJ, Salmerón-Sánchez M (2016) Protein adsorption as a key mediator in the nanotopographical control of cell behavior. ACS Nano 10(7):6638–6647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M, Lindahl A (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7(1):658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunes-Pereira J, Ribeiro S, Ribeiro C, Gombek CJ, Gama FM, Gomes AC, Patterson DA, Lanceros-Méndez S (2015) Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Poly Testing 44:234–241

    Article  CAS  Google Scholar 

  • Ozbolat IT (2016) 3D bioprinting: fundamentals, principles and applications. Academic Press, London

    Google Scholar 

  • Park JH, Jang J, Lee JS, Cho DW (2016a) Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med 13(6):612–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KD, Wang X, Lee JY, Park KM, Zhang S, Noh I (2016b) Research trends in biomimetic medical materials for tissue engineering: commentary. Biomater Res 20(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park SH, Jung CS, Min BH (2016c) Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Eng Regen Med 13(6):622–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pashkov V, Harkusha A (2017) 3-D bioprinting law regulation perspectives. Wiadomosci lekarskie (Warsaw, Poland: 1960), 70, 480. Available from http://pli.nlu.edu.ua/wp-content/uploads/2017/10/5.pdf. Accessed on 01 Nov 2017

  • Patterson J, Martino MM, Hubbell JA (2010) Biomimetic materials in tissue engineering. Mater Today 13(1):14–22

    Article  CAS  Google Scholar 

  • Perea-Gil I, Uriarte JJ, Prat-Vidal C, Gálvez-Montón C, Roura S, Llucià-Valldeperas A, Soler-Botija C, Farré R, Navajas D, Bayes-Genis A (2015) In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization. Am J Transl Res 7(3):558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pina S, Oliveira JM, Reis RL (2016) Biomimetic strategies to engineer mineralized human tissues. In: Handbook of bioceramics and biocomposites. Springer, Cham, pp 503–519

    Chapter  Google Scholar 

  • Pirraco RP, Obokata H, Iwata T, Marques AP, Tsuneda S, Yamato M, Reis RL, Okano T (2011) Development of osteogenic cell sheets for bone tissue engineering applications. Tissue Eng Part A 17(11–12):1507–1515

    Article  CAS  PubMed  Google Scholar 

  • Pourchet LJ, Thepot A, Albouy M, Courtial EJ, Boher A, Blum LJ, Marquette CA (2017) Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater 6(4):1601101

    Article  CAS  Google Scholar 

  • Press Release (2012) Organovo announces two issued patents, first company patent and key founder patent, https://www.sec.gov/Archives/edgar/data/1497253/000119312512297696/d379308dex992.htm. Accessed on 01 Nov 2017

  • Ranzani T, Gerboni G, Cianchetti M, Menciassi A (2015) A bioinspired soft manipulator for minimally invasive surgery. Bioinspir Biomim 10(3):035008

    Article  CAS  PubMed  Google Scholar 

  • Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S (2017) 3D fabrication of polymeric scaffolds for regenerative therapy. ACS Biomater Sci Eng 3:1175

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro C, Correia DM, Ribeiro S, Sencadas V, Botelho G, Lanceros-Méndez S (2015) Piezoelectric poly (vinylidene fluoride) microstructure and poling state in active tissue engineering. Eng Life Sci 15(4):351–356

    Article  CAS  Google Scholar 

  • Rose JC, Cámara-Torres M, Rahimi K, Köhler J, Möller M, De Laporte L (2017) Nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance. Nano Lett 17(6):3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roshanbinfar K, Hilborn J, Varghese OP, Oommen OP (2017) Injectable and thermoresponsive pericardial matrix derived conductive scaffold for cardiac tissue engineering. RSC Adv 7(51):31980–31988

    Article  CAS  Google Scholar 

  • Rowley JA, Lock LT, Roosterbio, Inc. (2015) Ready-to-print cells and integrated devices. U.S. Patent Application 15/311,018

    Google Scholar 

  • Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27(9):1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahara G, Hijikata W, Tomioka K, Shinshi T (2016) Implantable power generation system utilizing muscle contractions excited by electrical stimulation. Proc Inst Mech Eng Part H: J Eng Med 230(6):569–578

    Article  Google Scholar 

  • Sala RL, Kwon MY, Kim M, Gullbrand SE, Henning EA, Mauck RL, Camargo ER, Burdick JA (2017) Thermosensitive poly (N-vinylcaprolactam) injectable hydrogels for cartilage tissue engineering. Tissue Eng Part A 23(17–18):935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15

    Article  CAS  PubMed  Google Scholar 

  • Saludas L, Pascual-Gil S, Prósper F, Garbayo E, Blanco-Prieto M (2017) Hydrogel based approaches for cardiac tissue engineering. Int J Pharm 523(2):454–475

    Article  CAS  PubMed  Google Scholar 

  • Sari DP, Bang SM, Nguyen LT, Cho Y, Park KD, Lee SH, Lee IS, Zhang SM, Noh I (2016) Micro/Nano surface topography and 3D bioprinting of biomaterials in tissue engineering. J Nanosci Nanotechnol 16:8909–8922

    Article  CAS  Google Scholar 

  • Sawkins MJ, Mistry P, Brown BN, Shakesheff KM, Bonassar LJ, Yang J (2015) Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication 7(3):035004

    Article  CAS  PubMed  Google Scholar 

  • Seo BB, Koh JT, Song SC (2017) Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Biomaterials 122:91–104

    Article  CAS  PubMed  Google Scholar 

  • Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1(11):792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soiberman U, Kambhampati SP, Wu T, Mishra MK, Oh Y, Sharma R, Wang J, Al Towerki AE, Yiu S, Stark WJ, Kannan RM (2017) Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials 125:38–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed-Picard FN, Du Y, Hertsenberg AJ, Palchesko R, Funderburgh ML, Feinberg AW, Funderburgh JL (2016) Scaffold-free tissue engineering of functional corneal stromal tissue. J Tissue Eng Regen Med 12:59. https://doi.org/10.1002/term.2363

    Article  CAS  Google Scholar 

  • Tam RY, Smith LJ, Shoichet MS (2017) Engineering cellular microenvironments with photo-and enzymatically responsive hydrogels: toward biomimetic 3D cell culture models. Acc Chem Res 50(4):703–713

    Article  CAS  PubMed  Google Scholar 

  • Teichmann J, Nitschke M, Pette D, Valtink M, Gramm S, Härtel FV, Noll T, Funk RH, Engelmann K, Werner C (2015) Thermo-responsive cell culture carriers based on poly (vinyl methyl ether) – the effect of biomolecular ligands to balance cell adhesion and stimulated detachment. Sci Technol Adv Mater 16(4):045003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tekin H, Sanchez JG, Tsinman T, Langer R, Khademhosseini A (2011) Thermoresponsive platforms for tissue engineering and regenerative medicine. AICHE J 57(12):3249–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27

    Article  CAS  PubMed  Google Scholar 

  • Tonda-Turo C, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G (2017) Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. J Tissue Eng Regen Med 11(1):197–208

    Article  CAS  PubMed  Google Scholar 

  • Tran JL (2015) Patenting bioprinting Harvard journal of law and technology digest, 2015 symposium, 2, Available from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2603693. Accessed on 01 Nov 2017)

  • Uhlig K, Wegener T, He J, Zeiser M, Bookhold J, Dewald I, Godino N, Jaeger M, Hellweg T, Fery A, Duschl C (2016) Patterned thermoresponsive microgel coatings for noninvasive processing of adherent cells. Biomacromolecules 17(3):1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Uz M, Mallapragada SK (2017) Smart materials for nerve regeneration and neural tissue engineering. In: Smart materials for tissue engineering. RSC, Cambridge, pp 382–408

    Chapter  Google Scholar 

  • Varanasi VG, Ilyas A, Kramer PR, Azimaie T, The Texas A&M University System (2016) In vivo live 3D printing of regenerative bone healing scaffolds for rapid fracture healing. U.S. Patent Application 15/360,788

    Google Scholar 

  • Varkey M, Atala A (2015) Organ bioprinting: a closer look at ethics and policies. Wake Forest JL & Pol’y 5:275

    Google Scholar 

  • Vellinger JC, Boland E, Kurk MA, Milliner K, Logan NS, Inventors; Techshot, Inc., assignee (2016) Biomanufacturing system, method, and 3D bioprinting hardware in a reduced gravity environment. U.S. Patent Application 15/225,547

    Google Scholar 

  • Vo TN, Tatara AM, Santoro M, van den Beucken JJ, Leeuwenburgh SC, Jansen JA, Mikos AG (2017) Acellular mineral deposition within injectable, dual-gelling hydrogels for bone tissue engineering. J Biomed Mater Res A 105(1):110–117

    Article  CAS  PubMed  Google Scholar 

  • Wagle D, Arce P (2017) Liposome-nanotemplated agarose-gel for tissue engineering scaffold: preliminary synthesis & transport characterization. In: Proceedings of student research and creative inquiry day, 1. https://publish.tntech.edu/index.php/PSRCI/article/view/161. Accessed on 10 Oct 2017

  • Walker JM, Bodamer E, Krebs O, Luo Y, Kleinfehn A, Becker ML, Dean D (2017) Effect of chemical and physical properties on the in vitro degradation of 3D printed high resolution poly (propylene fumarate) scaffolds. Biomacromolecules 18(4):1419–1425

    Article  CAS  PubMed  Google Scholar 

  • Walters NJ, Gentleman E (2015) Evolving insights in cell–matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater 11:3–16

    Article  CAS  PubMed  Google Scholar 

  • Wang LS, Lee F, Lim J, Du C, Wan AC, Lee SS, Kurisawa M (2014) Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid–tyramine hydrogel system to promote the formation of functional vasculature. Acta Biomater 10(6):2539–2550

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wu Y, Hu T, Guo B, Ma PX (2017) Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomater 59:68–81

    Article  CAS  PubMed  Google Scholar 

  • Whitmer WM, Seeber BU, Akeroyd MA (2014) The perception of apparent auditory source width in hearing-impaired adults. The J Acoust Soc Am 135(6):3548–3559

    Article  PubMed  Google Scholar 

  • WÅ‚odarczyk-Biegun MK, del Campo A (2017) 3D bioprinting of structural proteins. Biomaterials 134:180–201

    Article  PubMed  CAS  Google Scholar 

  • World Intellectual Property Organization (2017) What is intellectual property? Available from: www.wipo.int/about-ip/en/. Accessed on 01 Nov 2017

  • Wu A (2014) Single-action three-dimensional model printing methods. US Patent 8,817,332

    Google Scholar 

  • Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6:24474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang L, Guo B, Ma PX (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11(6):5646–5659

    Article  CAS  PubMed  Google Scholar 

  • Wüst S, Müller R, Hofmann S (2015) 3D bioprinting of complex channels – effects of material, orientation, geometry, and cell embedding. J Biomed Mater Res A 103(8):2558–2570

    Article  PubMed  CAS  Google Scholar 

  • Xue X, Thiagarajan L, Braim S, Saunders BR, Shakesheff KM, Alexander C (2017) Upper critical solution temperature thermo-responsive polymer brushes and a mechanism for controlled cell attachment. J Mater Chem B 5:4926–4933

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Chang G, Sun T, Xu Y, Ma Z, Zhou T, Lin L (2016) Molecular communication in nanonetworks. Nano Biomed Eng 8(4):274–287

    Article  CAS  Google Scholar 

  • Yang M, Lelkes PI, Gangolli RA, Gerstenhaber JA, Devlin SM, Temple University-Of The Commonwealth System of Higher Education (2015) Biomimetic scaffold for regenerative dentistry. U.S. Patent Application 15/326,189

    Google Scholar 

  • Yang YJ, Holmberg AL, Olsen BD (2017) Artificially engineered protein polymers. Annu Rev Chem Biomol Eng 8(1):549

    Article  CAS  PubMed  Google Scholar 

  • Yayon A, Sirkis R, Amit B, Wortzel A, Hepacore Ltd. (2017) Conjugates of carboxy polysaccharides with fibroblast growth factors and variants thereof. U.S. Patent 9,610,357

    Google Scholar 

  • Yoo SS (2015) 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat 25:507–511

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Wei Y, Villasante A, Ng JJ, Arkonac DE, Chao PH, Vunjak-Novakovic G (2017) Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model. Biomaterials 132:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai X, Ma Y, Hou C, Gao F, Zhang Y, Ruan C, Pan H, Lu WW, Liu W (2017) 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater Sci Eng 3(6):1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, Song L, Atala A, Zhao W (2017a) 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater 50:154–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, Dokmeci MR (2017b) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163

    Article  PubMed  Google Scholar 

  • Zhu W, Harris BT, Zhang LG (2016) Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting. In: Engineering in Medicine and Biology Society (EMBC), 2016 I.E. 38th annual international conference of the IEEE, pp 4185–4188

    Google Scholar 

  • Zhu W, Qu X, Zhu J, Ma X, Patel S, Liu J, Wang P, Lai CS, Gou M, Xu Y, Zhang K (2017) Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124:106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant (2015R1A2A1A10054592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insup Noh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopinathan, J., Noh, I. (2018). Current Status of Development and Intellectual Properties of Biomimetic Medical Materials. In: Noh, I. (eds) Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, vol 1064. Springer, Singapore. https://doi.org/10.1007/978-981-13-0445-3_22

Download citation

Publish with us

Policies and ethics