Protein Cage Nanoparticles as Delivery Nanoplatforms

  • Bongseo Choi
  • Hansol Kim
  • Hyukjun Choi
  • Sebyung KangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)


Protein cage nanoparticles are made of biomaterials, proteins, and have well-defined cage-like architectures designed and built by nature. They are composed of multiple copies of one or a small number of chemically identical subunits having a highly uniform nano-size and symmetric structure. Protein cage nanoparticles have genetic and chemical plasticity amenable to simultaneously introducing multiple cell-specific targeting ligands, diagnostic agents, and their corresponding therapeutic agents at desired sites depending on its purpose. A wide range of protein cage nanoparticles, such as ferritin, lumazine synthase, encapsulin, and virus-like particles, has been extensively explored and utilized in biomedical fields as effective delivery nanoplatforms of diagnostics and/or therapeutics. Highly biocompatible and plastic protein cage nanoparticles may provide a new paradigm for developing simple, but versatile in vivo delivery systems.


Protein cage nanoparticle Delivery nanoplatform Cargo delivery Vaccine delivery MRI contrast agent 


  1. Aljabali AAA, Shukla S, Lomonossoff GP, Steinmetz NF, Evans DJ (2013) CPMV-DOX delivers. Mol Pharm 10(1):3–10. CrossRefGoogle Scholar
  2. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48. CrossRefPubMedGoogle Scholar
  3. Anand P, O’Neil A, Lin E, Douglas T, Holford M (2015) Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci Rep 5:12497. CrossRefPubMedCentralPubMedGoogle Scholar
  4. Anderson EA, Isaacman S, Peabody DS, Wang EY, Canary JW, Kirshenbaum K (2006) Viral nanoparticles Donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. Nano Lett 6(6):1160–1164. CrossRefGoogle Scholar
  5. Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, Brinker CJ, Caldeira JC, Chackerian B, Wharton W, Peabody DS (2011) Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5(7):5729–5745. CrossRefPubMedCentralPubMedGoogle Scholar
  6. Azuma Y, Zschoche R, Hilvert D (2017) The C-terminal peptide of Aquifex aeolicus riboflavin synthase directs encapsulation of native and foreign guests by a cage-forming lumazine synthase. J Biol Chem 292(25):10321–10327. CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10(11):787–796. CrossRefGoogle Scholar
  8. Beck T, Tetter S, Künzle M, Hilvert D (2015) Construction of Matryoshka-type structures from supercharged protein nanocages. Angew Chem Int Ed 54(3):937–940. CrossRefGoogle Scholar
  9. Berzofsky JA, Ahlers JD, Belyakov IM (2001) Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 1(3):209–219. CrossRefGoogle Scholar
  10. Bode SA, Minten IJ, Nolte RJM, Cornelissen JJLM (2011) Reactions inside nanoscale protein cages. Nanoscale 3(6):2376–2389. CrossRefPubMedGoogle Scholar
  11. Brasch M, de la Escosura A, Ma Y, Uetrecht C, Heck AJR, Torres T, Cornelissen JJLM (2011) Encapsulation of Phthalocyanine supramolecular stacks into virus-like particles. J Am Chem Soc 133(18):6878–6881. CrossRefGoogle Scholar
  12. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651. CrossRefGoogle Scholar
  13. Brown SD, Fiedler JD, Finn MG (2009) Assembly of hybrid bacteriophage Qβ virus-like particles. Biochemistry 48(47):11155–11157. CrossRefPubMedCentralPubMedGoogle Scholar
  14. Brumfield S, Willits D, Tang L, Johnson JE, Douglas T, Young M (2004) Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J Gen Virol 85(4):1049–1053. CrossRefGoogle Scholar
  15. Brune KD, Leneghan DB, Brian IJ, Ishizuka AS, Bachmann MF, Draper SJ, Biswas S, Howarth M (2016) Plug-and-display: decoration of virus-like particles via isopeptide bonds for modular immunization. Sci Rep 6:19234. CrossRefPubMedCentralPubMedGoogle Scholar
  16. Cao C, Wang X, Cai Y, Sun L, Tian L, Wu H, He X, Lei H, Liu W, Chen G, Zhu R, Pan Y (2014) Targeted in vivo imaging of microscopic tumors with Ferritin-based nanoprobes across biological barriers. Adv Mater 26(16):2566–2571. CrossRefGoogle Scholar
  17. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35(6):512–523. CrossRefGoogle Scholar
  18. Chackerian B (2007) Virus-like particles: flexible platforms for vaccine development. Expert Review of Vaccines 6(3):381–390. CrossRefGoogle Scholar
  19. Chen Y, Xiong X, Liu X, Li J, Wen Y, Chen Y, Dai Q, Cao Z, Yu W (2006) Immunoreactivity of HCV/HBV epitopes displayed in an epitope-presenting system. Mol Immunol 43(5):436–442. CrossRefGoogle Scholar
  20. Chen W, Cao Y, Liu M, Zhao Q, Huang J, Zhang H, Deng Z, Dai J, Williams DF, Zhang Z (2012) Rotavirus capsid surface protein VP4-coated Fe3O4 nanoparticles as a theranostic platform for cellular imaging and drug delivery. Biomaterials 33(31):7895–7902. CrossRefGoogle Scholar
  21. Choi B, Moon H, Hong SJ, Shin C, Do Y, Ryu S, Kang S (2016) Effective delivery of antigen–encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection. ACS Nano 10(8):7339–7350. CrossRefGoogle Scholar
  22. Datta A, Hooker JM, Botta M, Francis MB, Aime S, Raymond KN (2008) High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. J Am Chem Soc 130(8):2546–2552. CrossRefGoogle Scholar
  23. Douglas T, Young M (2006) Viruses: making friends with Old Foes. Science 312(5775):873. CrossRefGoogle Scholar
  24. Enomoto T, Kawano M, Fukuda H, Sawada W, Inoue T, Haw KC, Kita Y, Sakamoto S, Yamaguchi Y, Imai T, Hatakeyama M, Saito S, Sandhu A, Matsui M, Aoki I, Handa H (2013) Viral protein-coating of magnetic nanoparticles using simian virus 40 VP1. J Biotechnol 167(1):8–15. CrossRefGoogle Scholar
  25. Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nano 7(7):459–464. CrossRefGoogle Scholar
  26. Ferreira MF, Mousavi B, Ferreira PM, Martins CIO, Helm L, Martins JA, Geraldes CFGC (2012) Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI. Dalton Trans 41(18):5472–5475. CrossRefGoogle Scholar
  27. Flenniken ML, Uchida M, Liepold LO, Kang S, Young MJ, Douglas T (2009) A library of protein cage architectures as nanomaterials. Curr Top Microbiol Immunol 327:71–93Google Scholar
  28. Frey R, Hayashi T, Hilvert D (2016) Enzyme-mediated polymerization inside engineered protein cages. Chem Commun 52(68):10423–10426. CrossRefGoogle Scholar
  29. Galaway FA, Stockley PG (2013) MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm 10(1):59–68. CrossRefGoogle Scholar
  30. Garimella PD, Datta A, Romanini DW, Raymond KN, Francis MB (2011) Multivalent, high-relaxivity MRI contrast agents using rigid Cysteine-reactive Gadolinium complexes. J Am Chem Soc 133(37):14704–14709. CrossRefPubMedCentralPubMedGoogle Scholar
  31. Giessen TW (2016) Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science. Curr Opin Chem Biol 34:1–10. CrossRefPubMedGoogle Scholar
  32. Grgacic EVL, Anderson DA (2006) Virus-like particles: passport to immune recognition. Methods 40(1):60–65. CrossRefGoogle Scholar
  33. Han J-A, Kang YJ, Shin C, Ra J-S, Shin H-H, Hong SY, Do Y, Kang S (2014) Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine 10(3):561–569. CrossRefPubMedGoogle Scholar
  34. Hooker JM, Datta A, Botta M, Raymond KN, Francis MB (2007) Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and Interior Cargo strategies. Nano Lett 7(8):2207–2210. CrossRefPubMedGoogle Scholar
  35. Huang X, Stein BD, Cheng H, Malyutin A, Tsvetkova IB, Baxter DV, Remmes NB, Verchot J, Kao C, Bronstein LM, Dragnea B (2011) Magnetic virus-like nanoparticles in N. benthamiana Plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano 5(5):4037–4045. CrossRefPubMedCentralPubMedGoogle Scholar
  36. Janitzek CM, Matondo S, Thrane S, Nielsen MA, Kavishe R, Mwakalinga SB, Theander TG, Salanti A, Sander AF (2016) Bacterial superglue generates a full-length circumsporozoite protein virus-like particle vaccine capable of inducing high and durable antibody responses. Malar J 15:545. CrossRefPubMedCentralPubMedGoogle Scholar
  37. Jardine J, Julien J-P, Menis S, Ota T, Kalyuzhniy O, McGuire A, Sok D, Huang P-S, MacPherson S, Jones M, Nieusma T, Mathison J, Baker D, Ward AB, Burton DR, Stamatatos L, Nemazee D, Wilson IA, Schief WR (2013) Rational HIV immunogen design to target specific germline B cell receptors. Science (New York, NY) 340(6133):711–716. CrossRefGoogle Scholar
  38. Jennings GT, Bachmann MF (2009) Immunodrugs: therapeutic VLP-based vaccines for chronic diseases. Annu Rev Pharmacol Toxicol 49(1):303–326. CrossRefPubMedGoogle Scholar
  39. Jordan PC, Patterson DP, Saboda KN, Edwards EJ, Miettinen HM, Basu G, Thielges MC, Douglas T (2016) Self-assembling biomolecular catalysts for hydrogen production. Nat Chem 8(2):179–185. CrossRefPubMedGoogle Scholar
  40. Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, Rao SS, Kong W-P, Wang L, Nabel GJ (2013) Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499(7456):102–106. CrossRefPubMedCentralPubMedGoogle Scholar
  41. Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JRR, Baxa U, Yamamoto T, Narpala S, Todd J-P, Rao SS, McDermott AB, Koup RA, Rossmann MG, Mascola JR, Graham BS, Cohen JI, Nabel GJ (2015) Rational design of an Epstein-Barr Virus vaccine targeting the receptor-binding site. Cell 162(5):1090–1100. CrossRefPubMedCentralPubMedGoogle Scholar
  42. Kang S, Douglas T (2010) Some enzymes just need a space of their own. Science 327(5961):42–43. CrossRefGoogle Scholar
  43. Kang S, Lander GC, Johnson JE, Prevelige PE (2008a) Development of bacteriophage P22 as a platform for molecular display: genetic and chemical modifications of the procapsid exterior surface. Chembiochem 9(4):514–518. CrossRefGoogle Scholar
  44. Kang S, Oltrogge LM, Broomell CC, Liepold LO, Prevelige PE, Young M, Douglas T (2008b) Controlled assembly of bifunctional chimeric protein cages and composition analysis using noncovalent Mass spectrometry. J Am Chem Soc 130(49):16527–16529. CrossRefPubMedGoogle Scholar
  45. Kang S, Suci PA, Broomell CC, Iwahori K, Kobayashi M, Yamashita I, Young M, Douglas T (2009) janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett 9(6):2360–2366. CrossRefGoogle Scholar
  46. Kang HJ, Kang YJ, Lee Y-M, Shin H-H, Chung SJ, Kang S (2012) Developing an antibody-binding protein cage as a molecular recognition drug modular nanoplatform. Biomaterials 33:5423–5430. CrossRefPubMedGoogle Scholar
  47. Kang YJ, Yang HJ, Jeon S, Kang Y-S, Do Y, Hong SY, Kang S (2014) Polyvalent display of monosaccharides on Ferritin protein cage nanoparticles for the recognition and binding of cell-surface lectins. Macromol Biosci 14(5):619–625. CrossRefGoogle Scholar
  48. Kim H, Kang YJ, Min J, Choi H, Kang S (2016) Development of an antibody-binding modular nanoplatform for antibody-guided targeted cell imaging and delivery. RSC Adv 6(23):19208–19213. CrossRefGoogle Scholar
  49. Kitagawa T, Kosuge H, Uchida M, Iida Y, Dalman RL, Douglas T, McConnell MV (2017) RGD targeting of human ferritin iron oxide nanoparticles enhances in vivo MRI of vascular inflammation and angiogenesis in experimental carotid disease and abdominal aortic aneurysm. J Magn Reson Imaging 45(4):1144–1153. CrossRefPubMedGoogle Scholar
  50. Kushnir N, Streatfield SJ, Yusibov V (2012) Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31(1):58–83. CrossRefGoogle Scholar
  51. Kwon C, Kang YJ, Jeon S, Jung S, Hong SY, Kang S (2012) Development of protein-cage-based delivery Nanoplatforms by Polyvalently displaying β-Cyclodextrins on the surface of Ferritins through Copper(I)-catalyzed Azide/Alkyne cycloaddition. Macromol Biosci 12(11):1452–1458. CrossRefGoogle Scholar
  52. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87(5):901–927. CrossRefGoogle Scholar
  53. Lee EJ, Lee NK, Kim I-S (2016) Bioengineered protein-based nanocage for drug delivery. Adv Drug Deliv Rev 106:157–171. CrossRefGoogle Scholar
  54. Leneghan DB, Miura K, Taylor IJ, Li Y, Jin J, Brune KD, Bachmann MF, Howarth M, Long CA, Biswas S (2017) Nanoassembly routes stimulate conflicting antibody quantity and quality for transmission-blocking malaria vaccines. Sci Rep 7:3811. CrossRefPubMedCentralPubMedGoogle Scholar
  55. Leong HS, Steinmetz NF, Ablack A, Destito G, Zijlstra A, Stuhlmann H, Manchester M, Lewis JD (2010) Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc 5(8):1406–1417. CrossRefPubMedCentralPubMedGoogle Scholar
  56. Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12(3):354–360. CrossRefPubMedCentralPubMedGoogle Scholar
  57. Liepold L, Anderson S, Willits D, Oltrogge L, Frank JA, Douglas T, Young M (2007) Viral capsids as MRI contrast agents. Magn Reson Med 58(5):871–879. CrossRefGoogle Scholar
  58. Liepold LO, Abedin MJ, Buckhouse ED, Frank JA, Young MJ, Douglas T (2009) supramolecular protein cage composite MR contrast agents with extremely efficient relaxivity properties. Nano Lett 9(12):4520–4526. CrossRefPubMedCentralPubMedGoogle Scholar
  59. Ma Y, Nolte RJM, Cornelissen JJLM (2012) Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 64(9):811–825. CrossRefGoogle Scholar
  60. Maham A, Tang Z, Wu H, Wang J, Lin Y (2009) Protein-based nanomedicine platforms for drug delivery. Small 5(15):1706–1721. CrossRefGoogle Scholar
  61. Manayani DJ, Thomas D, Dryden KA, Reddy V, Siladi ME, Marlett JM, Rainey GJA, Pique ME, Scobie HM, Yeager M, Young JAT, Manchester M, Schneemann A (2007) A viral nanoparticle with dual function as an Anthrax Antitoxin and vaccine. PLoS Pathog 3(10):e142. CrossRefPubMedCentralPubMedGoogle Scholar
  62. Maurer P, Jennings GT, Willers J, Rohner F, Lindman Y, Roubicek K, Renner WA, Müller P, Bachmann MF (2005) A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. Eur J Immunol 35(7):2031–2040. CrossRefGoogle Scholar
  63. Min J, Jung H, Shin H-H, Cho G, Cho H, Kang S (2013) Implementation of P22 viral capsids as intravascular magnetic resonance T1 contrast Conjugates via site-selective attachment of Gd(III)-chelating agents. Biomacromolecules 14(7):2332–2339. CrossRefGoogle Scholar
  64. Min J, Kim S, Lee J, Kang S (2014a) Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. RSC Adv 4(89):48596–48600. CrossRefGoogle Scholar
  65. Min J, Moon H, Yang HJ, Shin H-H, Hong SY, Kang S (2014b) Development of P22 viral capsid nanocomposites as anti-cancer drug, Bortezomib (BTZ), delivery nanoplatforms. Macromol Biosci 14(4):557–564. CrossRefGoogle Scholar
  66. Molino NM, Anderson AKL, Nelson EL, Wang S-W (2013) biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation. ACS Nano 7(11):9743–9752. CrossRefPubMedCentralPubMedGoogle Scholar
  67. Moon H, Kim WG, Lim S, Kang YJ, Shin H-H, Ko H, Hong SY, Kang S (2013) Fabrication of uniform layer-by-layer assemblies with complementary protein cage nanobuilding blocks via simple His-tag/metal recognition. J Mater Chem B 1(35):4504–4510. CrossRefGoogle Scholar
  68. Moon H, Lee J, Kim H, Heo S, Min J, Kang S (2014a) Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 Cell targeting optical nanoprobe. Biomaterials research 18:21. CrossRefPubMedCentralPubMedGoogle Scholar
  69. Moon H, Lee J, Min J, Kang S (2014b) Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromolecules 15:3794–3801. CrossRefGoogle Scholar
  70. Moon H, Bae Y, Kim H, Kang S (2016) Plug-and-playable fluorescent cell imaging modular toolkits using the bacterial superglue, SpyTag/SpyCatcher. Chem Commun 52(97):14051–14054. CrossRefGoogle Scholar
  71. O’Neil A, Prevelige PE, Basu G, Douglas T (2012) coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid. Biomacromolecules 13(12):3902–3907. CrossRefGoogle Scholar
  72. Ochoa WF, Chatterji A, Lin T, Johnson JE (2006) Generation and structural analysis of reactive empty particles derived from an icosahedral virus. Chem Biol 13(7):771–778. CrossRefGoogle Scholar
  73. Pan Y, Jia T, Zhang Y, Zhang K, Zhang R, Li J, Wang L (2012a) MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine 7:5957–5967. CrossRefPubMedCentralPubMedGoogle Scholar
  74. Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L (2012b) Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J 279(7):1198–1208. CrossRefGoogle Scholar
  75. Patterson DP, Prevelige PE, Douglas T (2012) Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22. ACS Nano 6(6):5000–5009. CrossRefGoogle Scholar
  76. Patterson DP, Rynda-Apple A, Harmsen AL, Harmsen AG, Douglas T (2013) Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. ACS Nano 7(4):3036–3044. CrossRefPubMedCentralPubMedGoogle Scholar
  77. Patterson DP, Schwarz B, Waters RS, Gedeon T, Douglas T (2014) Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem Biol 9(2):359–365. CrossRefGoogle Scholar
  78. Peabody DS (2003) A viral platform for chemical modification and multivalent display. Journal of Nanobiotechnology 1(1):5. CrossRefPubMedCentralPubMedGoogle Scholar
  79. Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, Caldeira JC, Chackerian B (2008) Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 380(1):252–263. CrossRefPubMedCentralPubMedGoogle Scholar
  80. Plummer EM, Manchester M (2011) Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(2):174–196. CrossRefGoogle Scholar
  81. Pokorski JK, Breitenkamp K, Finn MG (2011) Functional virus-based polymer-protein nanoparticles by atom transfer radical polymerization. J Am Chem Soc 133(24):9242–9245. CrossRefPubMedCentralPubMedGoogle Scholar
  82. Prasuhn JDE, Yeh RM, Obenaus A, Manchester M, Finn MG (2007) Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. Chem Commun 12:1269–1271. CrossRefGoogle Scholar
  83. Prevelige PE, Thomas D, King J (1988) Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J Mol Biol 202(4):743–757. CrossRefGoogle Scholar
  84. Qazi S, Liepold LO, Abedin MJ, Johnson B, Prevelige P, Frank JA, Douglas T (2013) P22 viral capsids as nanocomposite high-relaxivity MRI contrast agents. Mol Pharm 10(1):11–17. CrossRefGoogle Scholar
  85. Qazi S, Miettinen HM, Wilkinson RA, McCoy K, Douglas T, Wiedenheft B (2016) Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol Pharm 13(3):1191–1196. CrossRefGoogle Scholar
  86. Ra J-S, Shin H-H, Kang S, Do Y (2014) Lumazine synthase protein cage nanoparticles as antigen delivery nanoplatforms for dendritic cell-based vaccine development. Clin Exp Vaccine Res 3(2):227–234. CrossRefPubMedCentralPubMedGoogle Scholar
  87. Rhee J-K, Baksh M, Nycholat C, Paulson JC, Kitagishi H, Finn MG (2012) Glycan-targeted virus-like nanoparticles for photodynamic therapy. Biomacromolecules 13(8):2333–2338. CrossRefPubMedCentralPubMedGoogle Scholar
  88. Richert LE, Servid AE, Harmsen AL, Rynda-Apple A, Han S, Wiley JA, Douglas T, Harmsen AG (2012) A virus-like particle vaccine platform elicits heightened and hastened local lung mucosal antibody production after a single dose. Vaccine 30(24):3653–3665. CrossRefPubMedCentralPubMedGoogle Scholar
  89. Rösler A, Vandermeulen GWM, Klok H-A (2001) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 53(1):95–108. CrossRefGoogle Scholar
  90. Schwarz B, Douglas T (2015) Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):722–735. CrossRefPubMedCentralPubMedGoogle Scholar
  91. Scodeller EA, Tisminetzky SG, Porro F, Schiappacassi M, De Rossi A, Chiecco-Bianchi L, Baralle FE (1995) A new epitope presenting system displays a HIV-1 V3 loop sequence and induces neutralizing antibodies. Vaccine 13(13):1233–1239. CrossRefGoogle Scholar
  92. Seebeck FP, Woycechowsky KJ, Zhuang W, Rabe JP, Hilvert D (2006) A simple tagging system for protein encapsulation. J Am Chem Soc 128(14):4516–4517. CrossRefGoogle Scholar
  93. Sharma J, Uchida M, Miettinen HM, Douglas T (2017) Modular interior loading and exterior decoration of a virus-like particle. Nano 9(29):10420–10430. CrossRefGoogle Scholar
  94. Shukla S, Steinmetz NF (2015) Virus-based nanomaterials as PET and MR contrast agents: from technology development to translational medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):708–721. CrossRefPubMedCentralPubMedGoogle Scholar
  95. Song Y, Kang YJ, Jung H, Kim H, Kang S, Cho H (2015) Lumazine synthase protein nanoparticle-Gd(III)-DOTA conjugate as a T1 contrast agent for high-field MRI. Sci Rep 5:15656. CrossRefPubMedCentralPubMedGoogle Scholar
  96. Steinmetz NF, Hong V, Spoerke ED, Lu P, Breitenkamp K, Finn MG, Manchester M (2009) Buckyballs meet viral nanoparticles: candidates for biomedicine. J Am Chem Soc 131(47):17093–17095. CrossRefPubMedCentralPubMedGoogle Scholar
  97. Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB (2010) Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4(10):6014–6020. CrossRefGoogle Scholar
  98. Suci P, Kang S, Gmur R, Douglas T, Young M (2010) Targeted delivery of a photosensitizer to aggregatibacter actinomycetemcomitans biofilm. Antimicrob Agents Chemother 54(6):2489–2496. CrossRefPubMedCentralPubMedGoogle Scholar
  99. Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15(9):939–947. CrossRefGoogle Scholar
  100. Terashima M, Uchida M, Kosuge H, Tsao PS, Young MJ, Conolly SM, Douglas T, McConnell MV (2011) Human Ferritin cages for imaging vascular macrophages. Biomaterials 32(5):1430–1437. CrossRefGoogle Scholar
  101. Theil EC, Behera RK, Tosha T (2013) Ferritins for Chemistry and for life. Coord Chem Rev 257(2):579–586. CrossRefGoogle Scholar
  102. Thrane S, Janitzek CM, Matondo S, Resende M, Gustavsson T, de Jongh WA, Clemmensen S, Roeffen W, van de Vegte-Bolmer M, van Gemert GJ, Sauerwein R, Schiller JT, Nielsen MA, Theander TG, Salanti A, Sander AF (2016) Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J Nanobiotechnol 14:30. CrossRefGoogle Scholar
  103. Tissot AC, Maurer P, Nussberger J, Sabat R, Pfister T, Ignatenko S, Volk H-D, Stocker H, Müller P, Jennings GT, Wagner F, Bachmann MF (2008) Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. Lancet 371(9615):821–827. CrossRefGoogle Scholar
  104. Tissot AC, Renhofa R, Schmitz N, Cielens I, Meijerink E, Ose V, Jennings GT, Saudan P, Pumpens P, Bachmann MF (2010) Versatile virus-like particle carrier for epitope based vaccines. PLoS One 5(3):e9809. CrossRefPubMedCentralPubMedGoogle Scholar
  105. Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128(51):16626–16633. CrossRefGoogle Scholar
  106. Uchida M, Terashima M, Cunningham CH, Suzuki Y, Willits DA, Willis AF, Yang PC, Tsao PS, McConnell MV, Young MJ, Douglas T (2008) A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn Reson Med 60(5):1073–1081. CrossRefGoogle Scholar
  107. Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T (2010) The ferritin superfamily: supramolecular templates for materials synthesis. Biochim Biophys Acta Gen Subj 1800:834–845. CrossRefGoogle Scholar
  108. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63(1):185–198. CrossRefGoogle Scholar
  109. Wörsdörfer B, Woycechowsky KJ, Hilvert D (2011) Directed evolution of a protein container. Science 331(6017):589–592. CrossRefGoogle Scholar
  110. Wörsdörfer B, Pianowski Z, Hilvert D (2012) Efficient in vitro encapsulation of protein cargo by an engineered protein container. J Am Chem Soc 134(2):909–911. CrossRefGoogle Scholar
  111. Wu M, Sherwin T, Brown WL, Stockley PG (2005) Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids. Nanomedicine 1(1):67–76. CrossRefGoogle Scholar
  112. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109(12):E690–E697. CrossRefPubMedCentralPubMedGoogle Scholar
  113. Zhang X, Meining W, Fischer M, Bacher A, Ladenstein R (2001) X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 Å resolution: determinants of thermostability revealed from structural comparisons. J Mol Biol 306(5):1099–1114. CrossRefGoogle Scholar
  114. Zhang X, Meining W, Cushman M, Haase I, Fischer M, Bacher A, Ladenstein R (2003) A structure-based model of the reaction catalyzed by Lumazine synthase from Aquifex aeolicus. J Mol Biol 328(1):167–182. CrossRefGoogle Scholar
  115. Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J (2013) RGD-modified Apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7(6):4830–4837. CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bongseo Choi
    • 1
  • Hansol Kim
    • 1
  • Hyukjun Choi
    • 1
  • Sebyung Kang
    • 1
    Email author
  1. 1.Department of Biological Sciences, School of Life SciencesUlsan National Institute of Science and Technology (UNIST)UlsanSouth Korea

Personalised recommendations