Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications

  • Jiaju Lu
  • Xiumei WangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)


Tissue engineering is an appealing research field that involves the replacement and repair of damaged cells and tissues. Scientists and researchers are facing a great challenge to design and develop suitable scaffold materials with biological activities for the applications in tissue regeneration. Among a variety of natural and synthetic materials, biomimetic self-assembling peptides hold great promises as building blocks for fabricating hydrogel scaffolds with three-dimensional (3D) network structures, which could mimic the natural extracellular matrix (ECM). Furthermore, functionalized self-assembling peptides are easily obtained by introducing multiple bioactive peptide motifs derived from naturally occurring proteins. Over the past two decades, many kinds of biomimetic self-assembling peptides have been designed and developed, and these formed peptide hydrogel scaffolds show great potential applications in tissue engineering, such as angiogenesis, bone, cartilage, and nerve regeneration. In this chapter, we have endeavored to do a comprehensive review of biomimetic self-assembling peptides that form nanofiber hydrogel scaffolds. In particular, recent advances of biomimetic self-assembling peptide hydrogel for tissue engineering applications are also highlighted.


Self-assembling Peptide Biomimetic Molecular self-assembly Tissue engineering ECM 


  1. Aggeli A, Boden N, Cheng YL, Findlay JB, Knowles PF, Kovatchev P, Turnbull PJ (1996) Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation. Biochemistry 35(50):16213. CrossRefPubMedGoogle Scholar
  2. Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TCB, Pitkeathly M, Radford SE (1997a) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature 386:259. CrossRefPubMedGoogle Scholar
  3. Aggeli A, Bell M, Boden N, Keen JN, McLeish TCB, Nyrkova I, Radford SE, Semenov A (1997b) Engineering of peptide [small beta]-sheet nanotapes. J Mater Chem 7(7):1135–1145. CrossRefGoogle Scholar
  4. Aggeli A, Bell M, Carrick L, Fishwick C, Harding R, Mawer P, Radford S, Strong A, Boden N (2003) pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases. J Am Chem Soc 125(32):9619. CrossRefPubMedGoogle Scholar
  5. Ai J, Kiasatdolatabadi A, Ebrahimibarough S, Lotfibakhshaiesh N (2013) Polymeric scaffolds in neural tissue engineering: a review. Arch Neurosci 1(1):15–20. CrossRefGoogle Scholar
  6. Angeloni NL, Bond CW, Tang Y, Harrington DA, Zhang S, Stupp SI, McKenna KE, Podlasek CA (2011) Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32(4):1091–1101. CrossRefPubMedGoogle Scholar
  7. Arnold MS, Guler MO, Hersam MC, Stupp SI (2005) Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21(10):4705–4709. CrossRefPubMedGoogle Scholar
  8. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8(7):596–600. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beck K, Brodsky B (1998) Supercoiled protein motifs: the collagen triple-helix and the alpha-helical coiled coil. J Struct Biol 122(1–2):17. CrossRefPubMedGoogle Scholar
  10. Bellis SL (2011) Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32(18):4205–4210. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Berndt P, Fields GB, Tirrell M (1995) Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc 117(37):9515–9522. CrossRefGoogle Scholar
  12. Brunton PA, Davies RPW, Burke JL, Smith A, Aggeli A, Brookes SJ, Kirkham J (2013) Treatment of early caries lesions using biomimetic self-assembling peptides – a clinical safety trial. Bdj 215:E6. CrossRefPubMedGoogle Scholar
  13. Bull SR, Guler MO, Bras RE, Meade TJ, Stupp SI (2005) Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. Nano Lett 5(1):1–4. CrossRefPubMedGoogle Scholar
  14. Chen P (2005) Self-assembly of ionic-complementary peptides: a physicochemical viewpoint. Colloid Surf A 261(1–3):3–24. CrossRefGoogle Scholar
  15. Collier JH, Messersmith PB (2003) Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14(4):748–755. CrossRefPubMedGoogle Scholar
  16. Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94(1):1–18. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Davies RPW, Aggeli A (2011) Self-assembly of amphiphilic β-sheet peptide tapes based on aliphatic side chains. J Pept Sci 17(2):107–114. CrossRefPubMedGoogle Scholar
  18. Davis ME, Motion JPM, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable Self-Assembling Peptide Nanofibers Create Intramyocardial Microenvironments for Endothelial Cells. Circulation 111(4):442–450. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dong H, Paramonov SE, Hartgerink JD (2008) Self-assembly of α-helical coiled coil nanofibers. J Am Chem Soc 130(41):13691–13695. CrossRefPubMedGoogle Scholar
  20. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625. CrossRefPubMedGoogle Scholar
  21. Eskandari S, Guerin T, Toth I, Stephenson RJ (2017) Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 110:169–187. CrossRefPubMedGoogle Scholar
  22. Fishwick CWG, Beevers AJ, Carrick LM, Whitehouse CD, Aggeli A, Boden N (2003) Structures of helical β-tapes and twisted ribbons: the role of side-chain interactions on twist and bend behavior. Nano Lett 3(11):1475–1479. CrossRefGoogle Scholar
  23. Fleming S, Debnath S, Frederix PWJM, Tuttle T, Ulijn RV (2013) Aromatic peptide amphiphiles: significance of the Fmoc moiety. Chem Commun 49(90):10587–10589. CrossRefGoogle Scholar
  24. García AE, Sanbonmatsu KY (2002) α-Helical stabilization by side chain shielding of backbone hydrogen bonds. Proc Natl Acad Sci 99(5):2782–2787. CrossRefPubMedGoogle Scholar
  25. Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 12(8):2215–2227CrossRefGoogle Scholar
  26. Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. Plos One 1(1):e119. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gelain F, Silva D, Caprini A, Taraballi F, Natalello A, Villa O, Nam KT, Zuckermann RN, Doglia SM, Vescovi A (2011) BMHP1-derived self-assembling peptides: hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano 5(3):1845–1859. CrossRefPubMedGoogle Scholar
  28. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(3, Supplement):S20–S27. CrossRefGoogle Scholar
  29. Gomoll AH, Minas T (2014) The quality of healing: articular cartilage. Wound Repair Regen 22:30–38. CrossRefPubMedGoogle Scholar
  30. Greenfield MA, Palmer LC, Vernizzi G, de la Cruz MO, Stupp SI (2009) Buckled membranes in mixed-valence ionic amphiphile vesicles. J Am Chem Soc 131(34):12030–12031CrossRefGoogle Scholar
  31. Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35(24):6143–6156. CrossRefPubMedGoogle Scholar
  32. Guo H, Zhang JM, Xu T, Zhang ZD, Yao JR, Shao ZZ (2013) The robust hydrogel hierarchically assembled from a pH sensitive peptide amphiphile based on silk fibroin. Biomacromolecules 14(8):2733–2738. CrossRefPubMedGoogle Scholar
  33. Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11(1):41–60. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127(48):17025–17029. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hamada K, Hirose M, Yamashita T, Ohgushi H (2008) Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self-assembling peptide hydrogel scaffold. J Biomed Mater Res Part A 84A(1):128–136. CrossRefGoogle Scholar
  36. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hayashi K, Ochiaishino H, Shiga T, Onodera S, Saito A, Shibahara T, Azuma T (2016) Transplantation of human-induced pluripotent stem cells carried by self-assembling peptide nanofiber hydrogel improves bone regeneration in rat calvarial bone defects. BDJ Open 2:15007. CrossRefPubMedPubMedCentralGoogle Scholar
  38. He B, Yuan X, Jiang D (2014) Molecular self-assembly guides the fabrication of peptide nanofiber scaffolds for nerve repair. RSC Adv 4(45):23610–23621. CrossRefGoogle Scholar
  39. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci 97(12):6728–6733. CrossRefPubMedGoogle Scholar
  40. Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PloS One 2(2):e190. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hsieh PCH, Davis ME, Gannon J, MacGillivray C, Lee RT (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116(1):237–248. CrossRefPubMedGoogle Scholar
  42. Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338(6109):917–921. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl–dipeptides. Adv Mater 18(5):611–614. CrossRefGoogle Scholar
  44. Jung JP, Jones JL, Cronier SA, Collier JH (2008) Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation. Biomaterials 29(13):2143–2151. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11(10):1775–1781. CrossRefPubMedGoogle Scholar
  46. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky A (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci 99(15):9996–10001. CrossRefPubMedGoogle Scholar
  47. Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD (2008) Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J Orthop Res 26(3):322–331. CrossRefPubMedGoogle Scholar
  48. Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ (2009) Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A 16(2):465–477. CrossRefPubMedCentralGoogle Scholar
  49. Kopesky PW, Vanderploeg EJ, Kisiday JD, Frisbie DD, Sandy JD, Grodzinsky AJ (2010) Controlled delivery of transforming growth factor β1 by self-assembling peptide hydrogels induces chondrogenesis of bone marrow stromal cells and modulates Smad2/3 signaling. Tissue Eng Part A 17(1–2):83–92. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Koss KM, Unsworth LD (2016) Neural tissue engineering: bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomater 44:2–15. CrossRefPubMedGoogle Scholar
  51. Koutsopoulos S (2016) Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J Biomed Mater Res Part A 104(4):1002–1016. CrossRefGoogle Scholar
  52. Kumar VA, Wang BK, Kanahara SM (2016) Rational design of fiber forming supramolecular structures. Exp Biol Med 241(9):899–908. CrossRefGoogle Scholar
  53. Langer R, Vacanti JP (1993) Tissue Eng Sci 260(5110):920–926. CrossRefGoogle Scholar
  54. Li WW, Talcott KE, Zhai AW, Kruger EA, Li VW (2005) The role of therapeutic angiogenesis in tissue repair and regeneration. Adv Skin Wound Care 18(9):491–500CrossRefGoogle Scholar
  55. Li X, Chen YY, Wang XM, Gao K, Gao YZ, Cao J, Zhang ZL, Lei J, Jin ZY, Wang YN (2017) Image-guided stem cells with functionalized self-assembling peptide nanofibers for treatment of acute myocardial infarction in a mouse model. Am J Transl Res 9(8):3723–3731PubMedPubMedCentralGoogle Scholar
  56. Liu X, Wang X, Horii A, Wang X, Qiao L, Zhang S, Cui FZ (2012) In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 4(8):2720–2727. CrossRefPubMedGoogle Scholar
  57. Liu X, Pi B, Wang H, Wang XM (2015) Self-assembling peptide nanofiber hydrogels for central nervous system regeneration. Front Mater Sci 9(1):1–13. CrossRefGoogle Scholar
  58. Loo Y, Zhang S, Hauser CA (2012) From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol Adv 30(3):593–603. CrossRefPubMedGoogle Scholar
  59. Lu JJ, Sun X, Yin HY, Shen XZ, Yang SH, Wang Y, Jiang WL, Sun Y, Zhao LY, Sun XD, Lu SB, Mikos AG, Peng J, Wang XM (2018) A neurotrophic peptide-functionalized selfassembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration. Nano Res. CrossRefGoogle Scholar
  60. Lupas AN, Gruber M (2005) The structure of α-helical coiled coils. Adv Protein Chem 70:37–38CrossRefGoogle Scholar
  61. Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60(2):184–198. CrossRefPubMedGoogle Scholar
  62. Mandal D, Nasrolahi SA, Parang K (2014) Self-assembly of peptides to nanostructures. Org Biomol Chem 12(22):3544–3561. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mata A, Geng Y, Henrikson KJ, Aparicio C, Stock SR, Satcher RL, Stupp SI (2010) Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 31(23):6004–6012. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Matson JB, Zha RH, Stupp SI (2011) Peptide self-assembly for crafting functional biological materials. Curr Opin Solid State Mater Sci 15(6):225–235. CrossRefPubMedPubMedCentralGoogle Scholar
  65. McGrath AM, Novikova LN, Novikov LN, Wiberg M (2010) BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res Bull 83(5):207–213CrossRefGoogle Scholar
  66. Mehrban N, Abelardo E, Wasmuth A, Hudson KL, Mullen LM, Thomson AR, Birchall MA, Woolfson DN (2014) Assessing cellular response to functionalized alpha-helical peptide hydrogels. Adv Healthc Mater 3(9):1387–1391. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Meng Q, Yao S, Wang X, Chen Y (2014) RADA16: a self-assembly peptide hydrogel for the application in tissue regeneration. J Biomater Tissue Eng 4(12):1019–1029. CrossRefGoogle Scholar
  68. Micklitsch CM, Knerr PJ, Branco MC, Nagarkar R, Pochan DJ, Schneider JP (2011) Zinc-triggered hydrogelation of a self-assembling β-hairpin peptide. Angew Chem 50(7):1577–1579. CrossRefGoogle Scholar
  69. Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF, Kisiday JD, Frisbie DD (2010) Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthr Cartil 18(12):1608–1619. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Miller RE, Grodzinsky AJ, Barrett MF, Hung HH, Frank EH, Werpy NM, Mcilwraith CW, Frisbie DD (2014) Effects of the combination of microfracture and self-assembling peptide filling on the repair of a clinically relevant trochlear defect in an equine model. J Bone Joint Surg Am 96(19):1601CrossRefGoogle Scholar
  71. Moradi F, Bahktiari M, Joghataei MT, Nobakht M, Soleimani M, Hasanzadeh G, Fallah A, Zarbakhsh S, Hejazian LB, Shirmohammadi M (2012) BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration. J Neurosci Res 90(12):2335–2348. CrossRefPubMedGoogle Scholar
  72. Moutevelis E, Woolfson DN (2009) A periodic table of coiled-coil protein structures. J Mol Biol 385(3):726–732. CrossRefPubMedGoogle Scholar
  73. Narmoneva DA, Oni O, Sieminski AL, Zhang S, Gertler JP, Kamm RD, Lee RT (2005) Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26(23):4837–4846. CrossRefPubMedGoogle Scholar
  74. Niece KL, Hartgerink JD, Donners JJ, Stupp SI (2003) Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc 125(24):7146–7147CrossRefGoogle Scholar
  75. Nune M, Subramanian A, Krishnan UM, Kaimal SS, Sethuraman S (2017) Self-assembling peptide nanostructures on aligned poly (lactide-co-glycolide) nanofibers for the functional regeneration of sciatic nerve. Nanomed Nanotechnol Biol Med 12(3):219–235. CrossRefGoogle Scholar
  76. Ogawa Y, Yoshiyama C, Kitaoka T (2012) Helical assembly of azobenzene-conjugated carbohydrate hydrogelators with specific affinity for lectins. Langmuir 28(9):4404–4412. CrossRefPubMedGoogle Scholar
  77. Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules 10(9):2646–2651. CrossRefPubMedGoogle Scholar
  78. Ozbas B, Rajagopal K, Hainesbutterick L, Schneider JP, Pochan DJ (2007) Reversible stiffening transition in β-hairpin hydrogels induced by ion complexation. J Phys Chem B 111(50):13901CrossRefGoogle Scholar
  79. Palmer LC, Stupp SI (2008) Molecular self-assembly into one-dimensional nanostructures. Acc Chem Res 41(12):1674–1684. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN (2000) Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry 39(30):8728–8734. CrossRefPubMedGoogle Scholar
  81. Pape HC, Evans A, Kobbe P (2010) Autologous bone graft: properties and techniques. J Orthop Trauma 24:S36–S40. CrossRefPubMedGoogle Scholar
  82. Pashuck ET, Stupp SI (2010) Direct observation of morphological tranformation from twisted ribbons into helical ribbons. J Am Chem Soc 132(26):8819–8821. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. P Natl Acad Sci USA 37(4):205–211. CrossRefGoogle Scholar
  84. Pérez CMR, Stephanopoulos N, Sur S, Lee SS, Newcomb C, Stupp SI (2015) The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann Biomed Eng 43(3):501–514. CrossRefGoogle Scholar
  85. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281(5375):389–392. CrossRefPubMedGoogle Scholar
  86. Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125(39):11802. CrossRefPubMedGoogle Scholar
  87. Pugliese R, Gelain F (2017) Peptidic biomaterials: from self-assembling to regenerative medicine. Trends Biotechnol 35(2):145. CrossRefPubMedGoogle Scholar
  88. Rajagopal K, Lamm MS, Hainesbutterick LA, Pochan DJ, Schneider JP (2009) Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10(9):2619CrossRefGoogle Scholar
  89. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674. CrossRefPubMedGoogle Scholar
  90. Robson Marsden H, Kros A (2010) Self-assembly of coiled coils in synthetic biology: inspiration and progress. Angew Chem Int Ed 49(17):2988–3005. CrossRefGoogle Scholar
  91. Schneider ‡ DJP, Ozbas B, Rajagopal K, Lisa Pakstis A, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030. CrossRefGoogle Scholar
  92. Semino CE, Kasahara J, Hayashi Y, Zhang S (2004) Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng 10(3-4):643–655CrossRefGoogle Scholar
  93. Shah RN, Shah NA, Lim MMDR, Hsieh C, Nuber G, Stupp SI (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci 107(8):3293–3298CrossRefGoogle Scholar
  94. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364. CrossRefPubMedGoogle Scholar
  95. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355. CrossRefPubMedGoogle Scholar
  96. Smith AM, Banwell EF, Edwards WR, Pandya MJ, Woolfson DN (2006) Engineering increased stability into self-assembled protein fibers. Adv Funct Mater 16(8):1022–1030. CrossRefGoogle Scholar
  97. Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-Diphenylalanine self assembles to a hydrogel via a novel architecture based on pi-pi interlocked beta-sheets. Adv Mater 20(1):37–41. CrossRefGoogle Scholar
  98. Sone ED, Zubarev ER, Stupp SI (2002) Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed 41(10):1705–1709. CrossRefGoogle Scholar
  99. Spoerke ED, Anthony SG, Stupp SI (2009) Enzyme directed templating of artificial bone mineral. Adv Mater 21(4):425–430. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Stendahl JC, Wang L-J, Chow LW, Kaufman DB, Stupp SI (2008) Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. Transplantation 86(3):478CrossRefGoogle Scholar
  101. Sun Y, Li W, Wu X, Zhang N, Zhang Y, Ouyang S, Song X, Fang X, Seeram R, Xue W (2016) Functional self-assembling peptide nanofiber hydrogels designed for nerve degeneration. ACS Appl Mater Interfaces 8(3):2348–2359. CrossRefPubMedGoogle Scholar
  102. Sun L, Zheng C, Webster TJ (2017) Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. Int J Nanomed 12:73. CrossRefGoogle Scholar
  103. Takumi T (1993) A protein with a single transmembrane domain forms an ion channel. Physiology 8(4):175–178CrossRefGoogle Scholar
  104. Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242(4881):1042CrossRefGoogle Scholar
  105. Tashiro K-i, Sephel GC, Weeks B, Sasaki M, Martin GR, Kleinman HK, Yamada Y (1989) A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem 264(27):16174–16182PubMedGoogle Scholar
  106. Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37(4):664–675. CrossRefPubMedGoogle Scholar
  107. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:Si32–Si34. CrossRefPubMedGoogle Scholar
  108. Walshaw J, Woolfson DN (2001) Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307(5):1427–1450. CrossRefPubMedGoogle Scholar
  109. Wang X, Horii A, Zhang S (2008) Designer functionalized self-assembling peptide nanofiber scaffolds for growth, migration, and tubulogenesis of human umbilical vein endothelial cells. Soft Matter 4(12):2388–2395CrossRefGoogle Scholar
  110. Wang XM, Lin Q, Horii A (2011) Screening of functionalized self-assembling peptide nanofiber scaffolds with angiogenic activity for endothelial cell growth. Prog Nat Sci Mater Int 21(2):111–116. CrossRefGoogle Scholar
  111. Wang X, Pan M, Wen J, Tang Y, Hamilton AD, Li Y, Qian C, Liu Z, Wu W, Guo J (2014) A novel artificial nerve graft for repairing long-distance sciatic nerve defects: a self-assembling peptide nanofiber scaffold-containing poly (lactic-co-glycolic acid) conduit. Neural Regen Res 9(24):2132. CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wang TW, Chang KC, Chen LH, Liao SY, Yeh CW, Chuang YJ (2017) Effects of an injectable functionalized self-assembling nanopeptide hydrogel on angiogenesis and neurogenesis for regeneration of the central nervous system. Nanoscale 9(42):16281–16292. CrossRefPubMedGoogle Scholar
  113. Webber MJ, Tongers J, Newcomb CJ, Marquardt K-T, Bauersachs J, Losordo DW, Stupp SI (2011) Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci 108(33):13438–13443. CrossRefPubMedGoogle Scholar
  114. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421. CrossRefPubMedGoogle Scholar
  115. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry – a chemical strategy for the synthesis of nanostructures. Science 254(5036):1312–1319. CrossRefPubMedGoogle Scholar
  116. Woolfson DN (2001) Core-directed protein design. Curr Opin Struct Biol 11(4):464–471. CrossRefPubMedGoogle Scholar
  117. Woolfson DN (2010) Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides. Pept Sci 94(1):118. CrossRefGoogle Scholar
  118. Wu G, Pan M, Wang X, Wen J, Cao S, Li Z, Li Y, Qian C, Liu Z, Wu W (2015) Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect. Sci Rep 5.
  119. Xu FM, Wang HB, Zhao J, Liu XS, Li DD, Chen CJ, Ji J (2013) Chiral packing of cholesteryl group as an effective strategy to get low molecular weight supramolecular hydrogels in the absence of intermolecular hydrogen bond. Macromolecules 46(11):4235–4246. CrossRefGoogle Scholar
  120. Yanlian Y, Ulung K, Xiumei W, Horii A, Yokoi H, Shuguang Z (2009) Designer self-assembling peptide nanomaterials. Nano Today 4(2):193–210. CrossRefGoogle Scholar
  121. Ye Z, Zhang H, Luo H, Wang S, Zhou Q, Du X, Tang C, Chen L, Liu J, Shi YK (2008) Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. J Pept Sci 14(2):152–162. CrossRefPubMedGoogle Scholar
  122. Yokoi H, Kinoshita T, Zhang S (2005) Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A 102(24):8414–8419. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Yoshida M, Goto N, Kawaguchi M, Koyama H, Kuroda J, Kitahora T, Iwasaki H, Suzuki S, Kataoka M, Takashi F, Kitajima M (2014) Initial clinical trial of a novel hemostat, TDM-621, in the endoscopic treatments of the gastric tumors. J Gastroenterol Hepatol 29:77–79. CrossRefPubMedGoogle Scholar
  124. Yu Z, Cai Z, Chen Q, Liu M, Ye L, Ren J, Liao W, Liu S (2016) Engineering [small beta]-sheet peptide assemblies for biomedical applications. Biomater Sci 4(3):365–374. CrossRefPubMedGoogle Scholar
  125. Zhan X, Gao M, Jiang Y, Zhang W, Wong WM, Yuan Q, Su H, Kang X, Dai X, Zhang W (2013) Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomed Nanotechnol Biol Med 9(3):305–315. CrossRefGoogle Scholar
  126. Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178. CrossRefGoogle Scholar
  127. Zhang SG, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. React Funct Polym 41(1-3):91–102. CrossRefGoogle Scholar
  128. Zhang SG, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. P Natl Acad Sci USA 90(8):3334–3338. CrossRefGoogle Scholar
  129. Zhang SG, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34(5):663–672. CrossRefPubMedGoogle Scholar
  130. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393. CrossRefPubMedGoogle Scholar
  131. Zhang SG, Gelain F, Zhao XJ (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15(5):413–420. CrossRefPubMedGoogle Scholar
  132. Zhang JM, Hao RW, Huang L, Yao JR, Chen X, Shao ZZ (2011) Self-assembly of a peptide amphiphile based on hydrolysed Bombyx mori silk fibroin. Chem Commun 47(37):10296–10298. CrossRefGoogle Scholar
  133. Zhou A, Chen S, He B, Zhao W, Chen X, Jiang D (2016) Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds. Drug Des Devel Ther 10:3043–3051. CrossRefPubMedPubMedCentralGoogle Scholar
  134. Ziv G, Haran G, Thirumalai D (2005) Ribosome exit tunnel can entropically stabilize α-helices. P Natl Acad Sci USA 102(52):18956–18961. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations