Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine

  • Chan Ho Park
  • Kyung Mi WooEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)


The fibrin matrix is fundamentally formed by the polymerization of fibrinogen and thrombin in blood plasma. It is a natural biopolymeric material to widely investigate for various tissue regenerations due to good biocompatibility, rapid biodegradability, and easy fabrication. In particular, the conjugated bioactive molecules with fibrinogen can promote tissue morphogenesis or maturation after cell adhesion on the matrices, migration, proliferation, or differentiation. Using these physiological properties with cell-material interactions, the fibrin matrices have been utilized in tissue engineering applications such as skin tissue, cardiovascular tissue, musculoskeletal tissue, or nerve tissue in preclinical and clinical situations. This chapter demonstrates the fibrin material and its tissue engineering applications as the therapeutic strategies.


Fibrin Biopolymeric mateirals Tissue engineering 


  1. Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14:199–215PubMedCrossRefPubMedCentralGoogle Scholar
  2. Albala DM, Lawson JH (2006) Recent clinical and investigational applications of fibrin sealant in selected surgical specialties. J Am Coll Surg 202(4):685–697PubMedCrossRefPubMedCentralGoogle Scholar
  3. Andree C, Munder BI, Behrendt P, Hellmann S, Audretsch W, Voigt M et al (2008) Improved safety of autologous breast reconstruction surgery by stabilisation of microsurgical vessel anastomoses using fibrin sealant in 349 free DIEP or fascia-muscle-sparing (fms)-TRAM flaps: a two-centre study. Breast 17(5):492–498PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19(2):179–192PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ben-Ari A, Rivkin R, Frishman M, Gaberman E, Levdansky L, Gorodetsky R (2009) Isolation and implantation of bone marrow-derived mesenchymal stem cells with fibrin micro beads to repair a critical-size bone defect in mice. Tissue Eng A 15(9):2537–2546CrossRefGoogle Scholar
  6. Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24(14):2497–2502PubMedCrossRefPubMedCentralGoogle Scholar
  7. Black LD 3rd, Meyers JD, Weinbaum JS, Shvelidze YA, Tranquillo RT (2009) Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Eng A 15(10):3099–3108CrossRefGoogle Scholar
  8. Breen A, O'Brien T, Pandit A (2009a) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng Part B Rev 15:201–214PubMedCrossRefPubMedCentralGoogle Scholar
  9. Breen A, O’Brien T, Pandit A (2009b) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng Part B Rev 15(2):201–214PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10(4):1502–1514PubMedCrossRefPubMedCentralGoogle Scholar
  11. Buchta C, Hedrich HC, Macher M, Hocker P, Redl H (2005) Biochemical characterization of autologous fibrin sealants produced by CryoSeal and Vivostat in comparison to the homologous fibrin sealant product Tissucol/Tisseel. Biomaterials 26(31):6233–6241PubMedPubMedCentralCrossRefGoogle Scholar
  12. Camci-Unal G, Annabi N, Dokmeci MR, Liao R, Khademhosseini A (2014) Hydrogels for cardiac tissue engineering. NPG Asia Mater 6:e99CrossRefGoogle Scholar
  13. Chang WG, Niklason LE (2017) A short discourse on vascular tissue engineering. NPJ Regen Med 2Google Scholar
  14. Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V et al (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12)PubMedCentralCrossRefGoogle Scholar
  15. Chernousov MA, Carey DJ (2003) alphaVbeta8 integrin is a Schwann cell receptor for fibrin. Exp Cell Res 291(2):514–524PubMedCrossRefPubMedCentralGoogle Scholar
  16. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139PubMedPubMedCentralCrossRefGoogle Scholar
  17. Collet JP, Park D, Lesty C, Soria J, Soria C, Montalescot G et al (2000) Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 20:1354–1361PubMedCrossRefPubMedCentralGoogle Scholar
  18. Connelly JT, Vanderploeg EJ, Levenston ME (2004) The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology 41(3–4):377–387PubMedPubMedCentralGoogle Scholar
  19. Cummings CL, Gawlitta D, Nerem RM, Stegemann JP (2004) Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25(17):3699–3706PubMedCrossRefPubMedCentralGoogle Scholar
  20. Davis HE, Miller SL, Case EM, Leach JK (2011) Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater 7:691–699PubMedCrossRefPubMedCentralGoogle Scholar
  21. Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M et al (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28(1):55–65PubMedCrossRefPubMedCentralGoogle Scholar
  22. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312PubMedCrossRefPubMedCentralGoogle Scholar
  23. Flanagan TC, Cornelissen C, Koch S, Tschoeke B, Sachweh JS, Schmitz-Rode T et al (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28(23):3388–3397PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gebara MM, Sayre MH, Corden JL (1997) Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. J Cell Biochem 64(3):390–402PubMedCrossRefPubMedCentralGoogle Scholar
  25. Grassl ED, Oegema TR, Tranquillo RT (2003) A fibrin-based arterial media equivalent. J Biomed Mater Res A 66(3):550–561PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20(12):12PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hall H (2007) Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Curr Pharm Des 13(35):3597–3607PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hall H, Hubbell JA (2004) Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating alphavbeta3-integrin and activating VEGF-R2. Microvasc Res 68(3):169–178PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hall H, Djonov V, Ehrbar M, Hoechli M, Hubbell JA (2004) Heterophilic interactions between cell adhesion molecule L1 and alphavbeta3-integrin induce HUVEC process extension in vitro and angiogenesis in vivo. Angiogenesis 7(3):213–223PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R et al (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 2(11):1500122CrossRefGoogle Scholar
  31. Herbert CB, Nagaswami C, Bittner GD, Hubbell JA, Weisel JW (1998) Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels. J Biomed Mater Res 40(4):551–559PubMedCrossRefPubMedCentralGoogle Scholar
  32. Horak M, Handl M, Podskubka A, Kana R, Adler J, Povysil C (2014) Comparison of the cellular composition of two different chondrocyte-seeded biomaterials and the results of their transplantation in humans. Folia Biol 60(1):1–9Google Scholar
  33. Huang S, Fu X (2010) Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 142(2):149–159PubMedCrossRefPubMedCentralGoogle Scholar
  34. Huang YC, Khait L, Birla RK (2007) Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J Biomed Mater Res A 80((3):719–731CrossRefGoogle Scholar
  35. Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5):551–558PubMedCrossRefPubMedCentralGoogle Scholar
  36. Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6(30):1–10PubMedCrossRefPubMedCentralGoogle Scholar
  37. Jimenez PA, Jimenez SE (2004) Tissue and cellular approaches to wound repair. Am J Surg 187(5A):56S–64SPubMedCrossRefPubMedCentralGoogle Scholar
  38. Johnson PJ, Parker SR, Sakiyama-Elbert SE (2010) Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res A 92((1):152–163CrossRefGoogle Scholar
  39. Johnson PJ, Wood MD, Moore AM, Mackinnon SE (2013) Tissue engineered constructs for peripheral nerve surgery. Eur Surg 45(3). CrossRefGoogle Scholar
  40. Koob S, Torio-Padron N, Stark GB, Hannig C, Stankovic Z, Finkenzeller G (2011) Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Eng A 17(3–4):311–321CrossRefGoogle Scholar
  41. Laurens N, Koolwijk P, de Maat MP (2006a) Fibrin structure and wound healing. J Thromb Haemost 4:932–939PubMedCrossRefPubMedCentralGoogle Scholar
  42. Laurens N, Koolwijk P, de Maat MP (2006b) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lee F, Kurisawa M (2013) Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta Biomater 9(2):5143–5152PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lee YB, Polio S, Lee W, Dai G, Menon L, Carroll RS et al (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223(2):645–652PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S et al (2012) Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng A 18(19–20):2173–2186CrossRefGoogle Scholar
  47. Li Y, Meng H, Liu Y, Lee BP (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. TheScientificWorldJOURNAL 2015(685690):1Google Scholar
  48. Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X et al (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lorber B, Hsiao WK, Hutchings IM, Martin KR (2014) Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication 6(1):015001PubMedCrossRefPubMedCentralGoogle Scholar
  50. MacNeil S (2008) Biomaterials for tissue engineering of skin. Mater Today 11(5):26–35CrossRefGoogle Scholar
  51. Makogonenko E, Tsurupa G, Ingham K, Medved L (2002) Interaction of fibrin(ogen) with fibronectin: further characterization and localization of the fibronectin-binding site. Biochemistry 41:7907–7913PubMedCrossRefPubMedCentralGoogle Scholar
  52. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mehdizadeh M, Yang J (2013) Design strategies and applications of tissue bioadhesives. Macromol Biosci 13(3):271–288PubMedCrossRefPubMedCentralGoogle Scholar
  55. Molly L, Quirynen M, Michiels K, van Steenberghe D (2006) Comparison between jaw bone augmentation by means of a stiff occlusive titanium membrane or an autologous hip graft: a retrospective clinical assessment. Clin Oral Implants Res 17(5):481–487PubMedCrossRefPubMedCentralGoogle Scholar
  56. Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904PubMedCrossRefPubMedCentralGoogle Scholar
  57. Neovius EB, Kratz G (2003) Tissue engineering by cocultivating human elastic chondrocytes and keratinocytes. Tissue Eng 9(2):365–369PubMedCrossRefPubMedCentralGoogle Scholar
  58. Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ (2017) A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 12:4937–4961PubMedPubMedCentralCrossRefGoogle Scholar
  59. Oh JH, Kim HJ, Kim TI, Baek JH, Ryoo HM, Woo KM (2012) The effects of the modulation of the fibronectin-binding capacity of fibrin by thrombin on osteoblast differentiation. Biomaterials 33:4089–4099PubMedCrossRefPubMedCentralGoogle Scholar
  60. Oh JH, Kim HJ, Kim TI, Woo KM (2014) Comparative evaluation of the biological properties of fibrin for bone regeneration. BMB Rep 47(2):110–114PubMedPubMedCentralCrossRefGoogle Scholar
  61. Park CH, Oh JH, Jung HM, Choi Y, Rahman SU, Kim S et al (2017) Effects of the incorporation of epsilon-aminocaproic acid/chitosan particles to fibrin on cementoblast differentiation and cementum regeneration. Acta Biomater 61:134–143PubMedCrossRefPubMedCentralGoogle Scholar
  62. Passaretti D, Silverman RP, Huang W, Kirchhoff CH, Ashiku S, Randolph MA et al (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng 7(6):805–815PubMedCrossRefPubMedCentralGoogle Scholar
  63. Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW (2015) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62(164–175CrossRefGoogle Scholar
  64. Peretti GM, Xu JW, Bonassar LJ, Kirchhoff CH, Yaremchuk MJ, Randolph MA (2006) Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng 12(5):1151–1168PubMedCrossRefPubMedCentralGoogle Scholar
  65. Perka C, Schultz O, Spitzer RS, Lindenhayn K, Burmester GR, Sittinger M (2000) Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21(11):1145–1153PubMedCrossRefPubMedCentralGoogle Scholar
  66. Pober JS, Tellides G (2012) Participation of blood vessel cells in human adaptive immune responses. Trends Immunol 33(1):49–57PubMedCrossRefPubMedCentralGoogle Scholar
  67. Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B Rev 14(1):105–118PubMedCrossRefPubMedCentralGoogle Scholar
  68. Rimann M, Laternser S, Keller H, Leupin O, Graf-Hausner U (2015) 3D bioprinted muscle and tendon tissues for drug development. Chimia 69(1–2):65–67PubMedCrossRefPubMedCentralGoogle Scholar
  69. Rybarczyk BJ, Lawrence SO, Simpson-Haidaris PJ (2003) Matrix-fibrinogen enhances wound closure by increasing both cell proliferation and migration. Blood 102:4035–4043PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sacchi V, Mittermayr R, Hartinger J, Martino MM, Lorentz KM, Wolbank S et al (2014) Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci USA 111(19):6952–6957PubMedCrossRefPubMedCentralGoogle Scholar
  71. Sakiyama SE, Schense JC, Hubbell JA (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13(15):2214–2224PubMedCrossRefPubMedCentralGoogle Scholar
  72. Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65(3):389–402PubMedCrossRefPubMedCentralGoogle Scholar
  73. Saltz R, Sierra D, Feldman D, Saltz MB, Dimick A, Vasconez LO (1991) Experimental and clinical applications of fibrin glue. Plast Reconstr Surg 88(6):1005–1015 discussion 1016-1007PubMedCrossRefPubMedCentralGoogle Scholar
  74. Santoro E, Agresta F, Buscaglia F, Mulieri G, Mazzarolo G, Bedin N et al (2007) Preliminary experience using fibrin glue for mesh fixation in 250 patients undergoing minilaparoscopic transabdominal preperitoneal hernia repair. J Laparoendosc Adv Surg Tech A 17(1):12–15PubMedCrossRefPubMedCentralGoogle Scholar
  75. Schek RM, Hollister SJ, Krebsbach PH (2004) Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Mol Ther 9(1):130–138PubMedCrossRefPubMedCentralGoogle Scholar
  76. Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347PubMedCrossRefPubMedCentralGoogle Scholar
  77. Simonpieri A, Del Corso M, Vervelle A, Jimbo R, Inchingolo F, Sammartino G et al (2012) Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol 13(7):1231–1256PubMedCrossRefPubMedCentralGoogle Scholar
  78. Spicer PP, Mikos AG (2010) Fibrin glue as a drug delivery system. J Control Release 148(1):49–55PubMedPubMedCentralCrossRefGoogle Scholar
  79. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25CrossRefGoogle Scholar
  80. Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tajdaran K, Shoichet MS, Gordon T, Borschel GH (2015) A novel polymeric drug delivery system for localized and sustained release of tacrolimus (FK506). Biotechnol Bioeng 112(9):1948–1953PubMedCrossRefPubMedCentralGoogle Scholar
  82. Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G et al (2015) Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 12(108):20150254PubMedPubMedCentralCrossRefGoogle Scholar
  83. Tsai EC, Dalton PD, Shoichet MS, Tator CH (2006) Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27(3):519–533PubMedCrossRefPubMedCentralGoogle Scholar
  84. Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C et al (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4(4):318–329PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wechselberger G, Russell RC, Neumeister MW, Schoeller T, Piza-Katzer H, Rainer C (2002) Successful transplantation of three tissue-engineered cell types using capsule induction technique and fibrin glue as a delivery vehicle. Plast Reconstr Surg 110(1):123–129PubMedCrossRefPubMedCentralGoogle Scholar
  86. Westreich R, Kaufman M, Gannon P, Lawson W (2004) Validating the subcutaneous model of injectable autologous cartilage using a fibrin glue scaffold. Laryngoscope 114(12):2154–2160PubMedCrossRefPubMedCentralGoogle Scholar
  87. Whelan D, Caplice NM, Clover AJ (2014) Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 196:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  88. Wolberg AS (2007) Thrombin generation and fibrin clot structure. Blood Rev 21:131–142PubMedCrossRefPubMedCentralGoogle Scholar
  89. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588PubMedPubMedCentralGoogle Scholar
  90. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S et al (2000) Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothoracic Surg 17(5):587–591CrossRefGoogle Scholar
  91. Yuan Ye K, Sullivan KE, Black LD (2011) Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp 55Google Scholar
  92. Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Dental Biomaterials, School of DentistryKyungpook National UniversityDaeguSouth Korea
  2. 2.Department of Pharmacology & Dental Therapeutics, Dental Research Institute and BK21 Program, School of DentistrySeoul National UniversitySeoulSouth Korea

Personalised recommendations