Advertisement

Artificial Methods for T Cell Activation: Critical Tools in T Cell Biology and T Cell Immunotherapy

  • Kyung-Ho RohEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)

Abstract

Antigen-specific immunity conferred by T lymphocytes is a result of complex molecular interactions at the immunological synapse. A variety of biomimetic approaches have been devised to artificially induce T cell activation either to study the T cell biology or to expand and prime the therapeutic T cell populations. Here we first briefly review the molecular and cellular, structural and phenotypical bases that are involved in T cell activation. The artificial methods for T cell activation are then discussed in two grand categories, the soluble (3D) and the surface-anchored (2D) platforms with their design parameters. With the growing number of successful adoptive T cell therapies, the spurring demands for effective and safe T cell expansion as well as precise control over resulting T cell functions and phenotypes warrant the extensions of engineering parameters in the development of novel methodologies for T cell activation.

Keywords

T cell activation T cell expansion Artificial antigen presenting cell Adoptive T cell therapy CAR-T 

References

  1. Appleman LJ, Boussiotis VA (2003) T cell anergy and costimulation. Immunol Rev 192:161–180PubMedCrossRefGoogle Scholar
  2. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286(5441):958–961PubMedCrossRefGoogle Scholar
  3. Bekoff M, Kubo R, Grey HM (1986) Activation requirements for normal T cells: accessory cell-dependent and -independent stimulation by anti-receptor antibodies. J Immunol 137(5):1411–1419PubMedGoogle Scholar
  4. Blumberg RS, Alarcon B, Sancho J, McDermott FV, Lopez P, Breitmeyer J, Terhorst C (1990) Assembly and function of the T cell antigen receptor. Requirement of either the lysine or arginine residues in the transmembrane region of the alpha chain. J Biol Chem 265(23):14036–14043PubMedGoogle Scholar
  5. Bourouina N, Husson J, Hivroz C, Henry N (2012) Biomimetic droplets for artificial engagement of living cell surface receptors: the specific case of the T-cell. Langmuir 28(14):6106–6113PubMedCrossRefGoogle Scholar
  6. Brossard C, Feuillet V, Schmitt A, Randriamampita C, Romao M, Raposo G, Trautmann A (2005) Multifocal structure of the T cell - dendritic cell synapse. Eur J Immunol 35(6):1741–1753PubMedCrossRefGoogle Scholar
  7. Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Barr VA, Samelson LE (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158(7):1263–1275PubMedPubMedCentralCrossRefGoogle Scholar
  8. Burbach BJ, Medeiros RB, Mueller KL, Shimizu Y (2007) T-cell receptor signaling to integrins. Immunol Rev 218:65–81PubMedCrossRefGoogle Scholar
  9. Call ME, Wucherpfennig KW (2004) Molecular mechanisms for the assembly of the T cell receptor-CD3 complex. Mol Immunol 40(18):1295–1305PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cochran JR, Cameron TO, Stern LJ (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12(3):241–250PubMedCrossRefGoogle Scholar
  11. Cochran JR, Cameron TO, Stone JD, Lubetsky JB, Stern LJ (2001) Receptor proximity, not intermolecular orientation, is critical for triggering T-cell activation. J Biol Chem 276(30):28068–28074PubMedCrossRefGoogle Scholar
  12. Curtsinger JW, Khazaeli A (1997) A reconsideration of stress experiments and population heterogeneity. Exp Gerontol 32(6):727–729PubMedCrossRefGoogle Scholar
  13. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334(6181):395–402PubMedCrossRefGoogle Scholar
  14. Davis DM, Dustin ML (2004) What is the importance of the immunological synapse? Trends Immunol 25(6):323–327PubMedCrossRefGoogle Scholar
  15. Davodeau F, Peyrat MA, Romagne F, Necker A, Hallet MM, Vie H, Bonneville M (1995) Dual T cell receptor beta chain expression on human T lymphocytes. J Exp Med 181(4):1391–1398PubMedCrossRefGoogle Scholar
  16. Derdak SV, Kueng HJ, Leb VM, Neunkirchner A, Schmetterer KG, Bielek E, Majdic O, Knapp W, Seed B, Pickl WF (2006) Direct stimulation of T lymphocytes by immunosomes: virus-like particles decorated with T cell receptor/CD3 ligands plus costimulatory molecules. Proc Natl Acad Sci USA 103(35):13144–13149PubMedCrossRefGoogle Scholar
  17. Durai M, Krueger C, Ye Z, Cheng L, Mackensen A, Oelke M, Schneck JP (2009) In vivo functional efficacy of tumor-specific T cells expanded using HLA-Ig based artificial antigen presenting cells (aAPC). Cancer Immunol Immunother 58(2):209–220PubMedCrossRefGoogle Scholar
  18. Dustin ML, Tseng SY, Varma R, Campi G (2006) T cell-dendritic cell immunological synapses. Curr Opin Immunol 18(4):512–516PubMedCrossRefGoogle Scholar
  19. Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristan C, Victora GD, Zanin-Zhorov A, Dustin ML (2010) Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 28:79–105PubMedPubMedCentralCrossRefGoogle Scholar
  20. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA (1996) An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274(5285):209–219PubMedCrossRefGoogle Scholar
  21. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227PubMedCrossRefGoogle Scholar
  22. Hailman E, Burack WR, Shaw AS, Dustin ML, Allen PM (2002) Immature CD4(+)CD8(+) thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity 16(6):839–848PubMedCrossRefGoogle Scholar
  23. Heath WR, Carbone FR, Bertolino P, Kelly J, Cose S, Miller JF (1995) Expression of two T cell receptor alpha chains on the surface of normal murine T cells. Eur J Immunol 25(6):1617–1623PubMedCrossRefGoogle Scholar
  24. Huang J, Zarnitsyna VI, Liu B, Edwards LJ, Jiang N, Evavold BD, Zhu C (2010) The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464(7290):932–936PubMedPubMedCentralCrossRefGoogle Scholar
  25. Huppa JB, Davis MM (2003) T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3(12):973–983PubMedCrossRefGoogle Scholar
  26. Huppa JB, Gleimer M, Sumen C, Davis MM (2003) Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat Immunol 4(8):749–755PubMedCrossRefGoogle Scholar
  27. Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW, Brameshuber M, Klein LO, Schutz GJ, Davis MM (2010) TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463(7283):963–967PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ilani T, Vasiliver-Shamis G, Vardhana S, Bretscher A, Dustin ML (2009) T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol 10(5):531–539PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kim JV, Latouche JB, Riviere I, Sadelain M (2004) The ABCs of artificial antigen presentation. Nat Biotechnol 22(4):403–410PubMedCrossRefGoogle Scholar
  30. Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM (2005) Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434(7030):238–243PubMedCrossRefGoogle Scholar
  31. Lewis MD, de Leenheer E, Fishman S, Siew LK, Gross G, Wong FS (2015) A reproducible method for the expansion of mouse CD8+ T lymphocytes. J Immunol Methods 417:134–138PubMedPubMedCentralCrossRefGoogle Scholar
  32. Li Y, Kurlander RJ (2010) Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J Transl Med 8:104PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lillemeier BF, Mortelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1):90–96PubMedCrossRefGoogle Scholar
  34. Ma Z, Sharp KA, Janmey PA, Finkel TH (2008) Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol 6(2):e43PubMedPubMedCentralCrossRefGoogle Scholar
  35. Maus MV, Thomas AK, Leonard DG, Allman D, Addya K, Schlienger K, Riley JL, June CH (2002) Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol 20(2):143–148PubMedCrossRefGoogle Scholar
  36. McConnell HM, Watts TH, Weis RM, Brian AA (1986) Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta 864(1):95–106PubMedCrossRefGoogle Scholar
  37. McKeithan TW (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci USA 92(11):5042–5046PubMedCrossRefGoogle Scholar
  38. Miletic AV, Swat M, Fujikawa K, Swat W (2003) Cytoskeletal remodeling in lymphocyte activation. Curr Opin Immunol 15(3):261–268PubMedCrossRefGoogle Scholar
  39. Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310(5751):1191–1193PubMedCrossRefGoogle Scholar
  40. Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4(2):123–132PubMedCrossRefGoogle Scholar
  41. O’Connor RS, Hao X, Shen K, Bashour K, Akimova T, Hancock WW, Kam LC, Milone MC (2012) Substrate rigidity regulates human T cell activation and proliferation. J Immunol 189(3):1330–1339PubMedPubMedCentralCrossRefGoogle Scholar
  42. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A (1993) Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262(5132):422–424PubMedCrossRefGoogle Scholar
  43. Prakken B, Wauben M, Genini D, Samodal R, Barnett J, Mendivil A, Leoni L, Albani S (2000) Artificial antigen-presenting cells as a tool to exploit the immune ‘synapse’. Nat Med 6(12):1406–1410PubMedCrossRefGoogle Scholar
  44. Rabinowitz JD, Beeson C, Lyons DS, Davis MM, McConnell HM (1996) Kinetic discrimination in T-cell activation. Proc Natl Acad Sci USA 93(4):1401–1405PubMedCrossRefGoogle Scholar
  45. Roh KH, Lillemeier BF, Wang F, Davis MM (2015) The coreceptor CD4 is expressed in distinct nanoclusters and does not colocalize with T-cell receptor and active protein tyrosine kinase p56lck. Proc Natl Acad Sci USA 112(13):E1604–E1613PubMedCrossRefGoogle Scholar
  46. Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K (2013) Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol 14(1):82–89PubMedCrossRefGoogle Scholar
  47. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271(5245):43–48PubMedCrossRefGoogle Scholar
  48. Schilbach K, Kerst G, Walter S, Eyrich M, Wernet D, Handgretinger R, Xie W, Rammensee HG, Muller I, Buhring HJ, Niethammer D (2005) Cytotoxic minor histocompatibility antigen HA-1-specific CD8+ effector memory T cells: artificial APCs pave the way for clinical application by potent primary in vitro induction. Blood 106(1):144–149PubMedCrossRefGoogle Scholar
  49. Sherman E, Barr V, Manley S, Patterson G, Balagopalan L, Akpan I, Regan CK, Merrill RK, Sommers CL, Lippincott-Schwartz J, Samelson LE (2011) Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35(5):705–720PubMedPubMedCentralCrossRefGoogle Scholar
  50. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368(6468):215–221PubMedCrossRefGoogle Scholar
  51. Stone JD, Chervin AS, Kranz DM (2009) T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126(2):165–176PubMedPubMedCentralCrossRefGoogle Scholar
  52. Syn NL, Wang L, Chow EK, Lim CT, Goh BC (2017) Exosomes in Cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol 35(7):665–676PubMedCrossRefGoogle Scholar
  53. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579PubMedCrossRefGoogle Scholar
  54. Trickett A, Kwan YL (2003) T cell stimulation and expansion using anti-CD3/CD28 beads. J Immunol Methods 275(1–2):251–255PubMedCrossRefGoogle Scholar
  55. Tskvitaria-Fuller I, Rozelle AL, Yin HL, Wulfing C (2003) Regulation of sustained actin dynamics by the TCR and costimulation as a mechanism of receptor localization. J Immunol 171(5):2287–2295PubMedCrossRefGoogle Scholar
  56. Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375(6527):148–151PubMedCrossRefGoogle Scholar
  57. van der Merwe PA, Dushek O (2011) Mechanisms for T cell receptor triggering. Nat Rev Immunol 11(1):47–55PubMedCrossRefGoogle Scholar
  58. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25(1):117–127PubMedPubMedCentralCrossRefGoogle Scholar
  59. Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S (2003) Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres. J Immunol 171(10):4974–4978PubMedCrossRefGoogle Scholar
  60. Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12(7):655–662PubMedCrossRefGoogle Scholar
  61. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7(3):297–303PubMedCrossRefGoogle Scholar
  62. Wolff CH, Hong SC, von Grafenstein H, Janeway CA Jr (1993) TCR-CD4 and TCR-TCR interactions as distinctive mechanisms for the induction of increased intracellular calcium in T-cell signalling. J Immunol 151(3):1337–1345PubMedGoogle Scholar
  63. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6(12):1253–1262PubMedCrossRefGoogle Scholar
  64. Yoon ST, Dianzani U, Bottomly K, Janeway CA Jr (1994) Both high and low avidity antibodies to the T cell receptor can have agonist or antagonist activity. Immunity 1(7):563–569PubMedCrossRefGoogle Scholar
  65. Zappasodi R, Di Nicola M, Carlo-Stella C, Mortarini R, Molla A, Vegetti C, Albani S, Anichini A, Gianni AM (2008) The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells. Haematologica 93(10):1523–1534PubMedCrossRefGoogle Scholar
  66. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4(5):594–600PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations