Immunomodulation of Biomaterials by Controlling Macrophage Polarization

  • Hyeong-Cheol YangEmail author
  • Hee Chul Park
  • Hongxuan Quan
  • Yongjoon Kim
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)


Macrophages are key players in innate immune responses to foreign substances. They participate in the phagocytosis of biomaterial-derived particles, angiogenesis, recruitment of fibroblasts, and formation of granulation tissues. Most macrophage functions are achieved through the release of various cytokines and chemokines; the release profile of cytokines is dependent on the phenotype of macrophages, namely proinflammatory M1 or antiinflammatory M2. M1 and M2 macrophages coexist during an inflammatory phase, and the M1/M2 ratio is considered to be an important factor for wound-healing or tissue regeneration. This ratio depends on the chemical and physical properties of biomaterials. To obtain a favorable foreign body reaction to biomaterials, the phenotypes of the macrophages can be modulated by cytokines, antibodies, small chemicals, and microRNAs. Geometrical surface fabrication of biomaterials can also be used for modulating the phenotype of macrophages.


Macrophage Proinflammatory M1 Antiinflammatory M2 Multinuclear foreign body giant cell Foreign body reaction Fibrotic capsule 


  1. Akisue T, Bauer TW, Farver CF, Mochida Y (2002) The effect of particle wear debris on nfkappab activation and pro-inflammatory cytokine release in differentiated thp-1 cells. J Biomed Mater Res 59(3):507–515CrossRefGoogle Scholar
  2. Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M (2014) Impact of 3-d printed pla- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-d structures on inflammation. Acta Biomater 10(2):613–622CrossRefGoogle Scholar
  3. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14(11):1835–1842CrossRefGoogle Scholar
  4. Bhardwaj U, Sura R, Papadimitrakopoulos F, Burgess DJ (2010) Plga/pva hydrogel composites for long-term inflammation control following s.C. Implantation. Int J Pharm 384(1–2):78–86CrossRefGoogle Scholar
  5. Blaine TA, Rosier RN, Puzas JE, Looney RJ, Reynolds PR, Reynolds SD, O’Keefe RJ (1996) Increased levels of tumor necrosis factor-alpha and interleukin-6 protein and messenger rna in human peripheral blood monocytes due to titanium particles. J Bone Joint Surg Am 78(8):1181–1192CrossRefGoogle Scholar
  6. Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, Daly KA, Reing JE, Badylak SF (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987CrossRefGoogle Scholar
  7. Cha BH, Shin SR, Leijten J, Li YC, Singh S, Liu JC, Annabi N, Abdi R, Dokmeci MR, Vrana NE et al (2017) Integrin-mediated interactions control macrophage polarization in 3d hydrogels. Adv Healthc Mater. CrossRefGoogle Scholar
  8. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189(7):3669–3680CrossRefGoogle Scholar
  9. Dondossola E, Holzapfel BM, Alexander S, Filippini S, Hutmacher DW, Friedl P (2016) Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat Biomed Eng 1:0007CrossRefGoogle Scholar
  10. Feng L, Song P, Zhou H, Li A, Ma Y, Zhang X, Liu H, Xu G, Zhou Y, Wu X et al (2014) Pentamethoxyflavanone regulates macrophage polarization and ameliorates sepsis in mice. Biochem Pharmacol 89(1):109–118CrossRefGoogle Scholar
  11. Feng X, Weng D, Zhou F, Owen YD, Qin H, Zhao J, Wen Y, Huang Y, Chen J, Fu H et al (2016) Activation of pparγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization. EBioMedicine 9:61–76CrossRefGoogle Scholar
  12. Gao S, Zhou J, Liu N, Wang L, Gao Q, Wu Y, Zhao Q, Liu P, Wang S, Liu Y et al (2015) Curcumin induces m2 macrophage polarization by secretion il-4 and/or il-13. J Mol Cell Cardiol 85:131–139CrossRefGoogle Scholar
  13. Giri SN, Hyde DM, Hollinger MA (1993) Effect of antibody to transforming growth factor beta on bleomycin induced accumulation of lung collagen in mice. Thorax 48(10):959–966CrossRefGoogle Scholar
  14. Gower RM, Boehler RM, Azarin SM, Ricci CF, Leonard JN, Shea LD (2014) Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression. Biomaterials 35(6):2024–2031CrossRefGoogle Scholar
  15. Hachim D, LoPresti ST, Yates CC, Brown BN (2017) Shifts in macrophage phenotype at the biomaterial interface via il-4 eluting coatings are associated with improved implant integration. Biomaterials 112:95–107CrossRefGoogle Scholar
  16. Hayes EM, Tsaousi A, Di Gregoli K, Jenkinson SR, Bond AR, Johnson JL, Bevan L, Thomas AC, Newby AC (2014) Classical and alternative activation and metalloproteinase expression occurs in foam cell macrophages in male and female apoe null mice in the absence of t and b lymphocytes. Front Immunol 5:537CrossRefGoogle Scholar
  17. Hernandez-Pando R, Bornstein QL, Aguilar Leon D, Orozco EH, Madrigal VK, Martinez Cordero E (2000) Inflammatory cytokine production by immunological and foreign body multinucleated giant cells. Immunology 100(3):352–358CrossRefGoogle Scholar
  18. Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R, Ramwadhdoebe TH, Gorter A, Welters MJ, van Hall T, van der Burg SH (2011) M2 macrophages induced by prostaglandin e2 and il-6 from cervical carcinoma are switched to activated m1 macrophages by cd4+ th1 cells. J Immunol (Baltimore, Md: 1950) 187(3):1157–1165CrossRefGoogle Scholar
  19. Hickey T, Kreutzer D, Burgess DJ, Moussy F (2002) In vivo evaluation of a dexamethasone/plga microsphere system designed to suppress the inflammatory tissue response to implantable medical devices. J Biomed Mater Res 61(2):180–187CrossRefGoogle Scholar
  20. Im GI, Han JD (2001) Suppressive effects of interleukin-4 and interleukin-10 on the production of proinflammatory cytokines induced by titanium-alloy particles. J Biomed Mater Res 58(5):531–536CrossRefGoogle Scholar
  21. Ingham E, Green TR, Stone MH, Kowalski R, Watkins N, Fisher J (2000) Production of tnf-alpha and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials 21(10):1005–1013CrossRefGoogle Scholar
  22. Keane TJ, Londono R, Turner NJ, Badylak SF (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33(6):1771–1781CrossRefGoogle Scholar
  23. Li B, Hu Y, Zhao Y, Cheng M, Qin H, Cheng T, Wang Q, Peng X, Zhang X (2017) Curcumin attenuates titanium particle-induced inflammation by regulating macrophage polarization in vitro and in vivo. Front Immunol 8:55PubMedPubMedCentralGoogle Scholar
  24. Ling H, Roux E, Hempel D, Tao J, Smith M, Lonning S, Zuk A, Arbeeny C, Ledbetter S (2013) Transforming growth factor beta neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats. PLoS One 8(1):e54499CrossRefGoogle Scholar
  25. Londono R, Dziki JL, Haljasmaa E, Turner NJ, Leifer CA, Badylak SF (2017) The effect of cell debris within biologic scaffolds upon the macrophage response. J Biomed Mater Res A 105:2109CrossRefGoogle Scholar
  26. Maloney WJ, James RE, Smith RL (1996) Human macrophage response to retrieved titanium alloy particles in vitro. Clin Orthop Relat Res 322:268–278CrossRefGoogle Scholar
  27. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27(1):451–483CrossRefGoogle Scholar
  28. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A 110(43):17253–17258CrossRefGoogle Scholar
  29. Merkel KD, Erdmann JM, McHugh KP, Abu-Amer Y, Ross FP, Teitelbaum SL (1999) Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol 154(1):203–210CrossRefGoogle Scholar
  30. Moore LB, Sawyer AJ, Charokopos A, Skokos EA, Kyriakides TR (2015) Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces nfkappab activation in the foreign body response. Acta Biomater 11:37–47CrossRefGoogle Scholar
  31. Morris DL, Singer K, Lumeng CN (2011) Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab Care 14(4):341–346CrossRefGoogle Scholar
  32. Pajarinen J, Kouri VP, Jamsen E, Li TF, Mandelin J, Konttinen YT (2013) The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater 9(11):9229–9240CrossRefGoogle Scholar
  33. Patil SD, Papadimitrakopoulos F, Burgess DJ (2004) Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coatings for inflammation control. Diabetes Technol Ther 6(6):887–897CrossRefGoogle Scholar
  34. Pollice PF, Hsu J, Hicks DG, Bukata S, Rosier RN, Reynolds PR, Puzas JE, O’Keefe RJ (1998) Interleukin-10 inhibits cytokine synthesis in monocytes stimulated by titanium particles: evidence of an anti-inflammatory regulatory pathway. J Orthop Res: Off Publ Orthop Res Soc 16(6):697–704CrossRefGoogle Scholar
  35. Quan H, Park HC, Kim Y, Yang HC (2017) Modulation of the anti-inflammatory effects of phosphatidylserine-containing liposomes by pegylation. J Biomed Mater Res A 105(5):1479–1486CrossRefGoogle Scholar
  36. Raghu G, Selman M (2015) Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. Am J Respir Crit Care Med 191(3):252–254CrossRefGoogle Scholar
  37. Rao AJ, Gibon E, Ma T, Yao Z, Smith RL, Goodman SB (2012) Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater 8(7):2815–2823CrossRefGoogle Scholar
  38. Rao AJ, Nich C, Dhulipala LS, Gibon E, Valladares R, Zwingenberger S, Smith RL, Goodman SB (2013) Local effect of il-4 delivery on polyethylene particle induced osteolysis in the murine calvarium. J Biomed Mater Res A 101((7):1926–1934CrossRefGoogle Scholar
  39. Ren P-G, Irani A, Huang Z, Ma T, Biswal S, Goodman SB (2011) Continuous infusion of uhmwpe particles induces increased bone macrophages and osteolysis. Clin Orthop Relat Res 469(1):113–122CrossRefGoogle Scholar
  40. Roch T, Akymenko O, Kruger A, Jung F, Ma N, Lendlein A (2014) Expression pattern analysis and activity determination of matrix metalloproteinase derived from human macrophage subsets. Clin Hemorheol Microcirc 58(1):147–158PubMedGoogle Scholar
  41. Rujitanaroj PO, Jao B, Yang J, Wang F, Anderson JM, Wang J, Chew SY (2013) Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater 9(1):4513–4524CrossRefGoogle Scholar
  42. Schoenenberger AD, Schipanski A, Malheiro V, Kucki M, Snedeker JG, Wick P, Maniura-Weber K (2016) Macrophage polarization by titanium dioxide (tio2) particles: size matters. ACS Biomater Sci Eng 2(6):908–919CrossRefGoogle Scholar
  43. Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, Yu T, Vunjak-Novakovic G (2015) Sequential delivery of immunomodulatory cytokines to facilitate the m1-to-m2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207CrossRefGoogle Scholar
  44. Takahashi H, Wang Y, Grainger DW (2010) Device-based local delivery of sirna against mammalian target of rapamycin (mtor) in a murine subcutaneous implant model to inhibit fibrous encapsulation. J Control Release 147(3):400–407CrossRefGoogle Scholar
  45. Trindade MC, Nakashima Y, Lind M, Sun DH, Goodman SB, Maloney WJ, Schurman DJ, Smith RL (1999) Interleukin-4 inhibits granulocyte-macrophage colony-stimulating factor, interleukin-6, and tumor necrosis factor-alpha expression by human monocytes in response to polymethylmethacrylate particle challenge in vitro. J Orthop Res Off Publ Orthop Res Soc 17(6):797–802CrossRefGoogle Scholar
  46. Trindade MC, Lind M, Nakashima Y, Sun D, Goodman SB, Schurman DJ, Smith RL (2001) Interleukin-10 inhibits polymethylmethacrylate particle induced interleukin-6 and tumor necrosis factor-alpha release by human monocyte/macrophages in vitro. Biomaterials 22(15):2067–2073CrossRefGoogle Scholar
  47. Valentin JE, Stewart-Akers AM, Gilbert TW, Badylak SF (2009) Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A 15(7):1687–1694CrossRefGoogle Scholar
  48. Wang Y, Papadimitrakopoulos F, Burgess DJ (2013a) Polymeric “smart” coatings to prevent foreign body response to implantable biosensors. J Control Release 169(3):341–347CrossRefGoogle Scholar
  49. Wang Y, Wu NN, Mou YQ, Chen L, Deng ZL (2013b) Inhibitory effects of recombinant il-4 and recombinant il-13 on uhmwpe-induced bone destruction in the murine air pouch model. J Surg Res 180(2):e73–e81CrossRefGoogle Scholar
  50. Willert HG, Semlitsch M (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11(2):157–164CrossRefGoogle Scholar
  51. Wimhurst JA, Brooks RA, Rushton N (2001) Inflammatory responses of human primary macrophages to particulate bone cements in vitro. J Bone Joint Surg 83(2):278–282CrossRefGoogle Scholar
  52. Yanagita M (2012) Inhibitors/antagonists of tgf-beta system in kidney fibrosis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc 27(10):3686–3691Google Scholar
  53. Yoshizawa H, Morishita Y, Watanabe M, Ishibashi K, Muto S, Kusano E, Nagata D (2015) Tgf-beta(1)-sirna delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther 22(4):333–340CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hyeong-Cheol Yang
    • 1
    Email author
  • Hee Chul Park
    • 1
  • Hongxuan Quan
    • 1
  • Yongjoon Kim
    • 1
  1. 1.Department of Dental Biomaterials Science and Dental Research InstituteSchool of Dentistry, Seoul National UniversitySeoulSouth Korea

Personalised recommendations