Biomaterials for Stem Cell Therapy for Cardiac Disease

  • Hyunbum Kim
  • Seung-Hyun L. Kim
  • Young-Hwan Choi
  • Young-Hyun Ahn
  • Nathaniel S. HwangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)


Myocardial Infarction (MI) in cardiac disease is the result of heart muscle losses due to a wide range of factors. Cardiac muscle failure is a crucial condition that provokes life-threatening outcomes. Heretofore, regeneration therapies in MI have used stem-cell-based therapy instantly after a myocardial injury to prevent the disease process and tissue malfunction. Despite the therapeutic utility of stem-cell-based regenerative therapy, barriers to successful treatment have been addressed. In this chapter, we illustrate a variety of emerging biomaterial strategies for enhancing the function of therapeutic stem cells, such as cell surface modification to synthetically endowing stem cells with new characteristics and hydrogels with its biological and mechanical properties. These investments offer a potential accompaniment to traditional stem-cell-based therapies for enhancing the efficacy of stem cell therapy to design properly activating cardiac tissues.


Tissue engineering Stem cells Surface engineering Hydrogel Biomaterials Cell therapy 


  1. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110(21):3300–3305. CrossRefPubMedGoogle Scholar
  2. Alcon A, Bozkulak EC, Qyang YB (2012) Regenerating functional heart tissue for myocardial repair. Cell Mol Life Sci 69(16):2635–2656. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16(5):203–209. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, Garratty G (2007) Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110(1):103–111. CrossRefPubMedGoogle Scholar
  5. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24):3009–3017CrossRefGoogle Scholar
  6. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355(12):1222–1232. CrossRefPubMedGoogle Scholar
  7. Babensee JE, McIntire LV, Mikos AG (2000) Growth factor delivery for tissue engineering. Pharm Res 17(5):497–504. CrossRefPubMedGoogle Scholar
  8. Balana B, Nicoletti C, Zahanich I, Graf EM, Christ T, Boxberger S, Ravens U (2006) 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res 16(12):949–960. CrossRefPubMedGoogle Scholar
  9. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673. CrossRefPubMedGoogle Scholar
  10. Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci U S A 109(48):19590–19595. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Camci-Unal G, Annabi N, Dokmeci MR, Liao R, Khademhosseini A (2014) Hydrogels for cardiac tissue engineering. Npg Asia Mater 6:e99. CrossRefGoogle Scholar
  12. Chaudhry PA, Mishima T, Sharov VG, Hawkins J, Alferness C, Paone G, Sabbah HN (2000) Passive epicardial containment prevents ventricular remodeling in heart failure. Ann Thorac Surg 70(4):1275–1280CrossRefGoogle Scholar
  13. Chi NH, Yang MC, Chung TW, Chen JY, Chou NK, Wang SS (2012) Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials 33(22):5541–5551. CrossRefPubMedGoogle Scholar
  14. Cho YW, Park JH, Park JS, Park K (2010) Pegylation: camouflage of proteins, cells, and nanoparticles against recognition by the body’s defense mechanism. In: Pharmaceutical sciences encyclopedia. Wiley, HobokenGoogle Scholar
  15. Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48(5):907–913. CrossRefPubMedGoogle Scholar
  16. Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ (2004a) Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 10(3–4):403–409. CrossRefPubMedGoogle Scholar
  17. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ (2004b) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44(3):654–660. CrossRefPubMedGoogle Scholar
  18. Chung YS, Huang CY, Ma MC, Chu CC, Chiang HS, Lin LJ, Chou SH (2011) Cardiac injury protection from mouse bone marrow stromal cells with in utero transplantation followed by secondary postnatal boost. Chin J Physiol 54(4):205–218. CrossRefPubMedGoogle Scholar
  19. Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD, Grodzinsky AJ, Anversa P, Lee RT (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 103(21):8155–8160. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843CrossRefGoogle Scholar
  21. Erlebacher JA, Weiss JL, Weisfeldt ML, Bulkley BH (1984) Early dilation of the infarcted segment in acute transmural myocardial infarction: role of infarct expansion in acute left ventricular enlargement. J Am Coll Cardiol 4(2):201–208CrossRefGoogle Scholar
  22. Guo M, Que C, Wang C, Liu X, Yan H, Liu K (2011) Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials 32(1):185–194. CrossRefPubMedGoogle Scholar
  23. Hernandez RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62(7–8):711–730. CrossRefPubMedGoogle Scholar
  24. Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108(8):1009–1014. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007. CrossRefGoogle Scholar
  26. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202. CrossRefPubMedGoogle Scholar
  27. Iwakura A, Fujita M, Kataoka K, Tambara K, Sakakibara Y, Komeda M, Tabata Y (2003) Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessel 18(2):93–99. CrossRefGoogle Scholar
  28. Joggerst SJ, Hatzopoulos AK (2009) Stem cell therapy for cardiac repair: benefits and barriers. Expert Rev Mol Med 11:e20. CrossRefPubMedGoogle Scholar
  29. Kang BJ, Kim H, Lee SK, Kim J, Shen Y, Jung S, Kang KS, Im SG, Lee SY, Choi M, Hwang NS, Cho JY (2014) Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater 10(7):3007–3017. CrossRefPubMedGoogle Scholar
  30. Kato M, Mrksich M (2004) Rewiring cell adhesion. J Am Chem Soc 126(21):6504–6505. CrossRefPubMedGoogle Scholar
  31. Kirouac DC, Zandstra PW (2008) The systematic production of cells for cell therapies. Cell Stem Cell 3(4):369–381. CrossRefPubMedGoogle Scholar
  32. Kucia M, Dawn B, Hunt G, Guo YR, Wysoczynski M, Majka M, Ratajczak J, Rezzoug F, Ildstad ST, Bolli R, Ratajczak MZ (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95(12):1191–1199. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lee DY, Park SJ, Nam JH, Byun Y (2006) A new strategy toward improving immunoprotection in cell therapy for diabetes mellitus: long-functioning PEGylated islets in vivo. Tissue Eng 12(3):615–623. CrossRefPubMedGoogle Scholar
  34. Lee RJ, Fang Q, Davol PA, Gu Y, Sievers RE, Grabert RC, Gall JM, Tsang E, Yee MS, Fok H, Huang NF, Padbury JF, Larrick JW, Lum LG (2007) Antibody targeting of stem cells to infarcted myocardium. Stem Cells 25(3):712–717. CrossRefPubMedGoogle Scholar
  35. Lee J, Choi J, Park JH, Kim MH, Hong D, Cho H, Yang SH, Choi IS (2014) Cytoprotective silica coating of individual mammalian cells through bioinspired silicification. Angew Chem Int Ed Engl 53(31):8056–8059. CrossRefPubMedGoogle Scholar
  36. Li ZQ, Guan JJ (2011) Hydrogels for cardiac tissue engineering. Polymers 3(2):740–761. CrossRefGoogle Scholar
  37. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50. CrossRefPubMedGoogle Scholar
  38. Liu Y, Song J, Liu W, Wan Y, Chen X, Hu C (2003) Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation? Cardiovasc Res 58(2):460–468CrossRefGoogle Scholar
  39. Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, Hauch KD, Laflamme MA, Murry CE, Ratner BD (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci U S A 107(34):15211–15216. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mathieu E, Lamirault G, Toquet C, Lhommet P, Rederstorff E, Sourice S, Biteau K, Hulin P, Forest V, Weiss P, Guicheux J, Lemarchand P (2012) Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One 7(12):e51991. CrossRefPubMedPubMedCentralGoogle Scholar
  41. McMullen NM, Pasumarthi KB (2007) Donor cell transplantation for myocardial disease: does it complement current pharmacological therapies? Can J Physiol Pharmacol 85(1):1–15. CrossRefPubMedGoogle Scholar
  42. Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41(7):1078–1083CrossRefGoogle Scholar
  43. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagege AA (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial – first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200. CrossRefPubMedGoogle Scholar
  44. Mukherjee S, Venugopal JR, Ravichandran R, Ramakrishna S, Raghunath M (2010) Multimodal biomaterial strategies for regeneration of infarcted myocardium. J Mater Chem 20(40):8819–8831. CrossRefGoogle Scholar
  45. Muruve DA (2004) Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 78:5966–5972CrossRefGoogle Scholar
  46. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705. CrossRefPubMedGoogle Scholar
  47. Parsa H, Ronaldson K, Vunjak-Novakovic G (2015) Bioengineering methods for myocardial regeneration. Adv Drug Deliv Rev 96:195–202CrossRefGoogle Scholar
  48. Pedron S, van Lierop S, Horstman P, Penterman R, Broer DJ, Peeters E (2011) Stimuli responsive delivery vehicles for cardiac microtissue transplantation. Adv Funct Mater 21(9):1624–1630. CrossRefGoogle Scholar
  49. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360. CrossRefGoogle Scholar
  50. Petersen LK, Narasimhan B (2008) Combinatorial design of biomaterials for drug delivery: opportunities and challenges. Expert Opin Drug Deliv 5(8):837–846. CrossRefPubMedGoogle Scholar
  51. Piao H, Kwon JS, Piao S, Sohn JH, Lee YS, Bae JW, Hwang KK, Kim DW, Jeon O, Kim BS, Park YB, Cho MC (2007) Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials 28(4):641–649. CrossRefPubMedGoogle Scholar
  52. Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 58(25):2615–2629. CrossRefPubMedGoogle Scholar
  53. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75(3):775–779CrossRefGoogle Scholar
  54. Reinecke H, Murry CE (2000) Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing? Cardiovasc Pathol 9(6):337–344CrossRefGoogle Scholar
  55. Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J (1998) Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 351(9096):88–92. CrossRefPubMedGoogle Scholar
  56. Saavedra WF, Tunin RS, Paolocci N, Mishima T, Suzuki G, Emala CW, Chaudhry PA, Anagnostopoulos P, Gupta RC, Sabbah HN, Kass DA (2002) Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J Am Coll Cardiol 39(12):2069–2076CrossRefGoogle Scholar
  57. Sampathkumar SG, Jones MB, Yarema KJ (2006) Metabolic expression of thiol-derivatized sialic acids on the cell surface and their quantitative estimation by flow cytometry. Nat Protoc 1(4):1840–1851. CrossRefPubMedGoogle Scholar
  58. Sarkar D, Vemula PK, Teo GS, Spelke D, Karnik R, Wee le Y, Karp JM (2008) Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjug Chem 19(11):2105–2109. CrossRefPubMedGoogle Scholar
  59. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM, Investigators R-A (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221. CrossRefPubMedGoogle Scholar
  60. Schlie-Wolter S, Ngezahayo A, Chichkov BN (2013) The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro. Exp Cell Res 319(10):1553–1561. CrossRefPubMedGoogle Scholar
  61. Shim WS, Jiang S, Wong P, Tan J, Chua YL, Tan YS, Sin YK, Lim CH, Chua T, Teh M, Liu TC, Sim E (2004) Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 324(2):481–488. CrossRefPubMedGoogle Scholar
  62. Siepe M, Giraud MN, Pavlovic M, Receputo C, Beyersdorf F, Menasche P, Carrel T, Tevaearai HT (2006) Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J Thorac Cardiovasc Surg 132(1):124–131. CrossRefPubMedGoogle Scholar
  63. Simpson D, Liu H, Fan THM, Nerem R, Dudley SC (2007) A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells 25(9):2350–2357. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25):2981–2988CrossRefGoogle Scholar
  65. Teramura Y, Iwata H (2010) Cell surface modification with polymers for biomedical studies. Soft Matter 6(6):1081–1091. CrossRefGoogle Scholar
  66. Thornton AJ, Alsberg E, Hill EE, Mooney DJ (2004) Shape retaining injectable hydrogels for minimally invasive bulking. J Urol 172(2):763–768. CrossRefPubMedGoogle Scholar
  67. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98. CrossRefPubMedGoogle Scholar
  68. Ungerleider JL, Christman KL (2014) Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cells Transl Med 3(9):1090–1099. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Venugopal JR, Prabhakaran MP, Mukherjee S, Ravichandran R, Dan K, Ramakrishna S (2012) Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface 9(66):1–19. CrossRefPubMedGoogle Scholar
  70. Wang F, Guan J (2010) Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv Drug Deliv Rev 62(7–8):784–797. CrossRefPubMedGoogle Scholar
  71. Wattendorf U, Merkle HP (2008) PEGylation as a tool for the biomedical engineering of surface modified microparticles. J Pharm Sci 97(11):4655–4669. CrossRefPubMedGoogle Scholar
  72. Wee YM, Lim DG, Kim YH, Kim JH, Kim SC, Yu E, Park MO, Choi MY, Park YH, Jang HJ, Cho EY, Cho MH, Han DJ (2008) Cell surface modification by activated polyethylene glycol prevents allosensitization after islet transplantation. Cell Transplant 17(10–11):1257–1269CrossRefGoogle Scholar
  73. Wei HJ, Chen CH, Lee WY, Chiu I, Hwang SM, Lin WW, Huang CC, Yeh YC, Chang Y, Sung HW (2008) Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 29(26):3547–3556. CrossRefPubMedGoogle Scholar
  74. Won YW, Patel AN, Bull DA (2014) Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 35(21):5627–5635. CrossRefPubMedGoogle Scholar
  75. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, Fishbein MC, Gambhir SS (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108(11):1302–1305. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wu J, Zeng FQ, Huang XP, Chung JCY, Konecny F, Weisel RD, Li RK (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32(2):579–586. CrossRefPubMedGoogle Scholar
  77. Xiong QA, Hill KL, Li QL, Suntharalingam P, Mansoor A, Wang XH, Jameel MN, Zhang PY, Swingen C, Kaufman DS, Zhang JY (2011) A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells 29(2):367–375. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ye ZY, Zhou Y, Cai HB, Tan WS (2011) Myocardial regeneration: roles of stem cells and hydrogels. Adv Drug Deliv Rev 63(8):688–697. CrossRefPubMedGoogle Scholar
  79. Yost MJ, Baicu CF, Stonerock CE, Goodwin RL, Price RL, Davis JM, Evans H, Watson PD, Gore CM, Sweet J, Creech L, Zile MR, Terracio L (2004) A novel tubular scaffold for cardiovascular tissue engineering. Tissue Eng 10(1–2):273–284. CrossRefPubMedGoogle Scholar
  80. You JO, Almeda D, Ye GJ, Auguste DT (2010) Bioresponsive matrices in drug delivery. J Biol Eng 4:15. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yu JS, Du KT, Fang QZ, Gu YP, Mihardja SS, Sievers RE, Wu JC, Lee RJ (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31(27):7012–7020. CrossRefPubMedGoogle Scholar
  82. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hyunbum Kim
    • 1
  • Seung-Hyun L. Kim
    • 1
  • Young-Hwan Choi
    • 1
  • Young-Hyun Ahn
    • 1
  • Nathaniel S. Hwang
    • 1
    Email author
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical Processes, Institute of Engineering ResearchSeoul National UniversitySeoulSouth Korea

Personalised recommendations