Skip to main content

Planning of Distributed Renewable Energy Resources Using Genetic Algorithm

  • Chapter
  • First Online:
Sustainable Electrical Power Resources through Energy Optimization and Future Engineering

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 296 Accesses

Abstract

Due to the limitations of fossil fuel reserves and environmental issues, distributed renewable energy resources (DRER) have become a good alternative solution for producing electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.H. Liu, Z.Q. Wu, Y.Q. Tu, Q.Y. Huang, H.W. Lou, A survey on distributed generation and its networking technology. Power Syst. Technol. 15, 020 (2008)

    Google Scholar 

  2. C. Kost, J.N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps et al., Levelized Cost of Electricity Renewable Energy Technologies.(1 March 2013). Available: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/Fraunhofer-ISE_LCOE_Renewable_Energy_technologies.pdf

  3. A. Lee, O. Zinaman, J. Logan, M. Bazilian, D. Arent, R.L. Newmark, Interactions, complementarities and tensions at the nexus of natural gas and renewable energy. Electr. J. 25, 38–48 (2012)

    Google Scholar 

  4. D.Q. Hung, N. Mithulananthan, R.C. Bansal, Analytical expressions for DG allocation in primary distribution networks. IEEE Trans. Energ. Convers. 25, 814–820 (2010)

    Article  Google Scholar 

  5. N. Acharya, P. Mahat, N. Mithulananthan, An analytical approach for DG allocation in primary distribution network. Int. J. Electr. Power Energ. Syst. 28, 669–678 (2006)

    Article  Google Scholar 

  6. P.S. Georgilakis, N.D. Hatziargyriou, Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans. Power Syst. 28, 3420–3428 (2013)

    Article  Google Scholar 

  7. W.-S. Tan, M.Y. Hassan, M.S. Majid, H.A. Rahman, Optimal distributed renewable generation planning: a review of different approaches. Renew. Sustain. Energ. Rev. 18, 626–645 (2013)

    Article  Google Scholar 

  8. M. Kowsalya, Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol. Comput. 15, 58–65 (2014)

    Article  Google Scholar 

  9. M.H. Moradi, M. Abedini, A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energ. Syst. 34, 66–74 (2012)

    Article  Google Scholar 

  10. S.K. Injeti, N.P. Kumar, A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems. Int. J. Electr. Power Energ. Syst. 45, 142–151 (2013)

    Article  Google Scholar 

  11. D.R. Prabha, T. Jayabarathi, Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm. Ain Shams Eng. J. 7, 683–694 (2016)

    Article  Google Scholar 

  12. H. Manafi, N. Ghadimi, M. Ojaroudi, P. Farhadi, Optimal placement of distributed generations in radial distribution systems using various PSO and DE algorithms. Elektron. Elektrotech. 19, 53–57 (2013)

    Google Scholar 

  13. B. Mohanty, S. Tripathy, A teaching learning based optimization technique for optimal location and size of DG in distribution network. J. Electr. Syst. Inform. Technol. 3, 33–44 (2016)

    Article  Google Scholar 

  14. R.S. Rao, K. Ravindra, K. Satish, S. Narasimham, Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE Trans. Power Syst. 28, 317–325 (2013)

    Article  Google Scholar 

  15. M. Jamil, A.S. Anees, Optimal sizing and location of SPV (solar photovoltaic) based MLDG (multiple location distributed generator) in distribution system for loss reduction, voltage profile improvement with economical benefits. Energy 103, 231–239 (2016)

    Article  Google Scholar 

  16. C. Yammani, S. Maheswarapu, S.K. Matam, A multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models. Int. J. Electr. Power Energ. Syst. 79, 120–131 (2016)

    Article  Google Scholar 

  17. H. Karami, B. Zaker, B. Vahidi, G.B. Gharehpetian, Optimal multi-objective number, locating, and sizing of distributed generations and distributed static compensators considering loadability using the genetic algorithm. Electr Power Compon. Syst. 44, 2161–2171 (2016)

    Article  Google Scholar 

  18. M. Esmaeili, M. Sedighizadeh, M. Esmaili, Multi-objective optimal reconfiguration and DG (Distributed generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty. Energy 103, 86–99 (2016)

    Article  Google Scholar 

  19. M.H. Moradi, S.R. Tousi, M. Abedini, Multi-objective PFDE algorithm for solving the optimal siting and sizing problem of multiple DG sources. Int. J. Electr. Power Energ. Syst. 56, 117–126 (2014)

    Article  Google Scholar 

  20. K. Mahesh, P. Nallagownden, I. Elamvazuthi, Advanced pareto front non-dominated sorting multi-objective particle swarm optimization for optimal placement and sizing of distributed generation. Energies 9, 982 (2016)

    Article  Google Scholar 

  21. M.A. Darfoun, M.E. El-Hawary, Multi-objective optimization approach for optimal distributed generation sizing and placement. Electr. Power Compon. Syst. 43, 828–836 (2015)

    Article  Google Scholar 

  22. N. Mohandas, R. Balamurugan, L. Lakshminarasimman, Optimal location and sizing of real power DG units to improve the voltage stability in the distribution system using ABC algorithm united with chaos. Int. J. Electr. Power Energ. Syst. 66, 41–52 (2015)

    Article  Google Scholar 

  23. W. Jakob, C. Blume, Pareto optimization or cascaded weighted sum: a comparison of concepts. Algorithms 7, 166 (2014)

    Article  MathSciNet  Google Scholar 

  24. R.T. Marler, J.S. Arora, The weighted sum method for multi-objective optimization: new insights. Struct. Multi. Optim. 41, 853–862 (2010)

    Article  MathSciNet  Google Scholar 

  25. A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91, 992–1007 (2006)

    Article  Google Scholar 

  26. G. Celli, E. Ghiani, S. Mocci, F. Pilo, A multiobjective evolutionary algorithm for the sizing and siting of distributed generation. IEEE Trans. Power Syst. 20, 750–757 (2005)

    Article  Google Scholar 

  27. M.A. Abido, Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Syst. 18, 1529–1537 (2003)

    Article  Google Scholar 

  28. A. Alarcon-Rodriguez, G. Ault, S. Galloway, Multi-objective planning of distributed energy resources: a review of the state-of-the-art. Renew. Sustain. Energ. Rev. 14, 1353–1366 (2010)

    Article  Google Scholar 

  29. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol 16. (Wiley, 2001)

    Google Scholar 

  30. M.C. Neri, A.Y. Hermosilla, Decomposition-Metaheuristic method applied to a capacitated facility location problem, in Proceedings of the Third Asian Mathematical Conference 2000, University of the Philippines, Diliman, Philippines, 23–27 Oct 2000, 2002, p. 389

    Google Scholar 

  31. D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988)

    Article  Google Scholar 

  32. M. Mitchell, An Introduction to Genetic Algorithms (MIT press, 1998)

    Google Scholar 

  33. K.-H. Kim, Y.-J. Lee, S.-B. Rhee, S.-K. Lee, and S.-K. You, Dispersed generator placement using fuzzy-GA in distribution systems, in Power Engineering Society Summer Meeting, 2002 IEEE, pp. 1148–1153

    Google Scholar 

  34. M.H. Moradi, A. Zeinalzadeh, Y. Mohammadi, M. Abedini, An efficient hybrid method for solving the optimal sitting and sizing problem of DG and shunt capacitor banks simultaneously based on imperialist competitive algorithm and genetic algorithm. Int. J. Electr. Power Energ. Syst. 54, 101–111 (2014)

    Article  Google Scholar 

  35. M. Gandomkar, M. Vakilian, M. Ehsan, A combination of genetic algorithm and simulated annealing for optimal DG allocation in distribution networks, in Canadian Conference on Electrical and Computer Engineering, 2005, pp. 645–648

    Google Scholar 

  36. T. Yokota, M. Gen, Y.-X. Li, Genetic algorithm for non-linear mixed integer programming problems and its applications. Comput. Ind. Eng. 30, 905–917 (1996)

    Article  Google Scholar 

  37. J.A. Momoh, M. El-Hawary, R. Adapa, A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14, 105–111 (1999)

    Article  Google Scholar 

  38. A. Dukpa, B. Venkatesh, M. El-Hawary, Application of continuation power flow method in radial distribution systems. Electr. Power Syst. Res. 79, 1503–1510 (2009)

    Article  Google Scholar 

  39. D. Shirmohammadi, H.W. Hong, A. Semlyen, G. Luo, A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst. 3, 753–762 (1988)

    Article  Google Scholar 

  40. A. Tah, D. Das, Novel analytical method for the placement and sizing of distributed generation unit on distribution networks with and without considering P and PQV buses. Int. J. Electr. Power Energ. Syst. 78, 401–413 (2016)

    Article  Google Scholar 

  41. S. Bolognani, S. Zampieri, On the existence and linear approximation of the power flow solution in power distribution networks. IEEE Trans. Power Syst. 31, 163–172 (2016)

    Article  Google Scholar 

  42. M. Haque, Efficient load flow method for distribution systems with radial or mesh configuration. IEE Proc-Gener. Transm. Distrib. 143, 33–38 (1996)

    Article  Google Scholar 

  43. J.-H. Teng, A direct approach for distribution system load flow solutions. IEEE Trans. Power Deliv 18, 882–887 (2003)

    Article  Google Scholar 

  44. S. Mishra, A simple algorithm for unbalanced radial distribution system load flow, in TENCON 2008–2008 IEEE Region 10 Conference, 2008, pp. 1–6

    Google Scholar 

  45. G. Chang, S. Chu, H. Wang, An improved backward/forward sweep load flow algorithm for radial distribution systems. IEEE Trans. Power Syst. 22, 882–884 (2007)

    Article  Google Scholar 

  46. E. Bompard, E. Carpaneto, G. Chicco, R. Napoli, Convergence of the backward/forward sweep method for the load-flow analysis of radial distribution systems. Int. J. Electr. Power Energ. Syst. 22, 521–530 (2000)

    Article  Google Scholar 

  47. V. Murty, B.R. Teja, A. Kumar, A contribution to load flow in radial distribution system and comparison of different load flow methods, in 2014 International Conference on Power Signals Control and Computations (EPSCICON), 2014, pp. 1–6

    Google Scholar 

  48. T. Alinjak, I. Pavić, M. Stojkov, Improvement of backward/forward sweep power flow method by using modified breadth-first search strategy. IET Gener. Transm. Distrib. 11, 102–109 (2017)

    Article  Google Scholar 

  49. D.Q. Hung, N. Mithulananthan, K.Y. Lee, Determining PV penetration for distribution systems with time-varying load models. IEEE Trans. Power Syst. 29, 3048–3057 (2014)

    Article  Google Scholar 

  50. L.A. Gallego, E. Carreno, and A. Padilha-Feltrin, Distributed generation modelling for unbalanced three-phase power flow calculations in smart grids, in 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), 2010, pp. 323–328

    Google Scholar 

  51. D. Singh, R. Misra, Effect of load models in distributed generation planning. IEEE Trans. Power Syst. 22, 2204–2212 (2007)

    Article  Google Scholar 

  52. D. Singh, K. Verma, Multiobjective optimization for DG planning with load models. IEEE Trans. Power Syst. 24, 427–436 (2009)

    Article  Google Scholar 

  53. D.Q. Hung, N. Mithulananthan, R. Bansal, Analytical strategies for renewable distributed generation integration considering energy loss minimization. Appl. Energ. 105, 75–85 (2013)

    Article  Google Scholar 

  54. TNB, Tenaga Nasional Berhad Annual Report 2015

    Google Scholar 

  55. E. Mahboubi-Moghaddam, M.R. Narimani, M.H. Khooban, A. Azizivahed, M. Javid sharifi, Multi-objective Distribution feeder reconfiguration to improve transient stability, and minimize power loss and operation cost using an enhanced evolutionary algorithm at the presence of distributed generations. Int. J. Electr. Power Energ. Syst. 76, 35–43, 3 (2016)

    Article  Google Scholar 

  56. D. Whitley, A genetic algorithm tutorial. Stat Comput 4, 65–85 (1994)

    Article  Google Scholar 

  57. J.H. Holland, Hierarchical descriptions, universal spaces and adaptive systems, Dtic Document (1968)

    Google Scholar 

  58. Z. Boor, S.M. Hosseini, Optimal placement of DG to improve the reliability of distribution systems considering time varying loads using genetic algorithm. Majlesi J. Electr. Eng vol. 7 (2012)

    Google Scholar 

  59. S. Naik, D. Khatod, M. Sharma, Sizing and siting of distributed generation in distribution networks for real power loss minimization using analytical approach, in 2013 International Conference on Power, Energy and Control (ICPEC), 2013, pp. 740–745

    Google Scholar 

  60. R. Chang, N. Mithulananthan, T. Saha, Novel mixed-integer method to optimize distributed generation mix in primary distribution systems, in 2011 21st Australasian Universities Power Engineering Conference (AUPEC), 2011, pp. 1–6

    Google Scholar 

  61. D.Q. Hung, N. Mithulananthan, An optimal operating strategy of DG unit for power loss reduction in distribution systems, in 2012 7th IEEE International Conference on Industrial and Information Systems (ICIIS), 2012, pp. 1–6

    Google Scholar 

  62. B. Venkatesh, R. Ranjan, H. Gooi, Optimal reconfiguration of radial distribution systems to maximize loadability. IEEE Trans. Power Syst. 19, 260–266 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nursyarizal Mohd Nor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nor, N.M., Ali, A., Ibrahim, T., Romlie, M.F. (2018). Planning of Distributed Renewable Energy Resources Using Genetic Algorithm. In: Sulaiman, S., Kannan, R., Karim, S., Mohd Nor, N. (eds) Sustainable Electrical Power Resources through Energy Optimization and Future Engineering. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-13-0435-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0435-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0434-7

  • Online ISBN: 978-981-13-0435-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics