Skip to main content

Tubular-Linear Synchronous Machines: Application to Wave Energy Harvesting

  • Chapter
  • First Online:
Book cover Linear Synchronous Machines

Part of the book series: Power Systems ((POWSYS))

Abstract

The chapter is aimed at one of the emergent sustainable applications, that is wave energy (WE) harvesting using appropriate converters (WECs). The survey is started by a classification of WECs according to the technology of their power take-off systems with emphasis on the topology of the integrated generator including rotating and linear topologies. Linear PM synchronous machines represent the most viable candidates thanks to their high force density and energy efficiency at low speeds. Of particular interest is the inset PM (IPM) tubular topology which offers an increase of the energy efficiency and an intrinsic-cancellation of the radial attractive forces. The IPM tubular-linear synchronous machines (T-LSMs) are then the subject of modelling considering its magnetic equivalent circuit (MEC). Following its synthesis, the MEC is solved considering an iterative numerical procedure. The preliminary results reveal that the IPM T-LSM features are affected by the end effect. Two design approaches dedicated to the minimization of such a drawback are proposed and their effectiveness checked by finite element analysis. The survey is achieved by an extension of the validity of the proposed model to the time-varying features by incorporating the mover position in the MEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Clement, P. McCullen, A. Falcao, A. Fiorentino, F. Gardner, K. Hammarlund, G. Lemonis, T. Lewis, K. Nielsen, S. Petroncini, M.-T. Pontes, B.-O. Schild, P. Sjostrom, H.C. Soresen, T. Thorpe, Wave energy in Europe: current status and perspectives. Renew. Sustain. Energy Rev. 6(5), 405–431 (2002)

    Article  Google Scholar 

  2. B. Drew, A.R. Plummer, M.N. Sahinkaya, A review of wave energy converter technology. J. Power Energy 223(part A), 887–902 (2009)

    Google Scholar 

  3. T. Ahmed, K. Nishida, M. Nakaoka, Grid power integration technologies for offshore ocean wave energy, in Proceeding of the IEEE Energy Conversion Congress and Exposition, Phoenix, Arizona, USA, Sept 2010, pp. 2378–2385

    Google Scholar 

  4. N. Muller, S. Kouro, J. Glaria, M. Malinowski, Medium-voltage power converter interface for wave dragon wave energy conversion system, in Proceedings of the IEEE Energy Conversion Congress and Exposition, Pittsburgh, Pennsylvania, USA, Sept 2013, pp. 352–358

    Google Scholar 

  5. N. Ahmed, M. Mueller, Impact of varying clearances for the wells turbine on heat transfer from electrical generators in oscillating water columns, in Proceedings of the 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte-carlo, Monaco, March 2013, pp. 1–6

    Google Scholar 

  6. H. Polinder, M. Mueller, M. Scuotto, M.G. de Sousa Prado, Linear generator systems for wave energy conversion, in Proceedings of the European Wave and Tidal Energy Conference, Porto, Portugal, Sept 2007, pp. 1–8

    Google Scholar 

  7. M. Blanco, M. Lafoz, G. Navarro, Wave energy converter dimensioning constrained by location, power take-off and control strategy, in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), Hangzhou, China, May 2012, pp. 1462–1467

    Google Scholar 

  8. J. Du, D. Liang, L. Xu, Q. Li, Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach. IEEE Trans. Magn. 46(6), 1334–1337 (2010)

    Article  Google Scholar 

  9. J. Pan, Y. Zou, G. Cao, Investigation of a low-power, double-sided switched reluctance generator for wave energy conversion. IET Renew. Power Gener. 7(2), 98–109 (2013)

    Article  Google Scholar 

  10. D. Wang, X. Wang, C. Zhang, Performance analysis of a high power density tubular linear switch reluctance generator for direct drive marine wave energy conversion, in Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, Oct 2014, pp. 1781–1785

    Google Scholar 

  11. J. Du, P. Lu, X. Yang, Analysis and modeling of mutually coupled linear switched reluctance machine with transverse flux for wave energy conversion, in Proceedings of the 2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, Apr 2016, pp. 1–6

    Google Scholar 

  12. D. Wang, C. Shao, X. Wang, C. Zhang, Performance characteristics and preliminary analysis of low cost tubular linear switch reluctance generator for direct drive WEC. IEEE Trans. Appl. Supercond. 26(7), 0612205(1–5) (2016)

    Google Scholar 

  13. J.S. Kim, J.Y. Kim, S.K. Song, J.B. Park, The development of detent force minimizing permanent magnet linear generator for direct-drive wave energy converter, in Proceedings of the 2012 Oceans, Hampton Roads, Virginia, USA, Oct 2012, pp. 1–7

    Google Scholar 

  14. H. Polinder, M.E.C. Damen, F. Gardner, Linear pm generator system for wave energy conversion in the AWS. IEEE Trans. Energy Convers. 19(3), 583–589 (2004)

    Article  Google Scholar 

  15. J. Zhang, H. Yu, Q. Chen, M. Hu, L. Huang, Q. Liu, Design and experimental analysis of AC linear generator with halbach PM arrays for direct-drive wave energy conversion. IEEE Trans. Appl. Supercond. 24(3), 0502704(1–4) (2014)

    Google Scholar 

  16. W. Xu, J.G. Zhu, Y. Zhang, Z. Li, Y. Li, Y. Wang, Y. Guo, Y. Li, Equivalent circuits for single-sided linear induction motors. IEEE Trans. Ind. Appl. 46(6), 2410–2423 (2010)

    Article  Google Scholar 

  17. O. Farrok, M.R. Islam, M.R.I. Sheikh, Y. Guo, J. Zhu, W. Xu, A novel superconducting magnet excited linear generator for wave energy conversion system. IEEE Trans. Appl. Supercond. 26(7), 5207105(1–5) (2016)

    Article  Google Scholar 

  18. C.A. Oprea, C.S. Martis, K.A. Biro, F.N. Jurca, Design and testing of a four-sided permanent magnet linear generator prototype, in Proceedings of the International Conference on Electrical Machines (ICEM), Rome, Italy, Sept 2010, pp. 1–6

    Google Scholar 

  19. V. DelliColli, P. Cancelliere, F. Marignetti, R. DiStefano, M. Scarano, A tubular-generator drive for wave energy conversion. IEEE Trans. Industr. Electron. 53(4), 1152–1159 (2006)

    Article  Google Scholar 

  20. J. Prudell, M. Stoddard, E. Amon, T.K.A. Brekken, A. von Jouanne, A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans. Ind. Appl. 46(6), 2392–2400 (2010)

    Article  Google Scholar 

  21. L. Cappelli, F. Marignetti, G. Mattiazzo, E. Giorcelli, G. Bracco, S. Carbone, C. Attaianese, Linear tubular permanent-magnet generators for the inertial sea wave energy converter. IEEE Trans. Ind. Appl. 50(3), 1817–1828 (2014)

    Article  Google Scholar 

  22. F. Alonge, M. Cirrincione, F.D. Ippolito, M. Pucci, A. Sferlazza, Parameter identification of linear induction motor model in extended range of operation by means of input-output data. IEEE Trans. Ind. Appl. 50(2), 959–972 (2014)

    Article  Google Scholar 

  23. A. Accetta, M. Pucci, A. Lidozzi, Compensation of static end effects in linear induction motor drives by frequency-adaptive synchronous controllers, in Proceedings of the International Conference on Electrical Machines (ICEM), Berlin, Germany, Sept 2014, pp. 716–723

    Google Scholar 

  24. J. Lu, W. Ma, Research on end effect of linear induction machine for highspeed industrial transportation. IEEE Trans. Plasma Sci. 39(1), 116–120 (2011)

    Article  Google Scholar 

  25. F. Cupertino, G. Pellegrino, P. Giangrande, L. Salvatore, Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects. IEEE Trans. Ind. Appl. 47(3), 1371–1379 (2011)

    Article  Google Scholar 

  26. F. Cupertino, P. Giangrande, G. Pellegrino, L. Salvatore, End effects in linear tubular motors and compensated position sensorless control based on pulsating voltage injection. IEEE Trans. Industr. Electron. 58(2), 494–502 (2011)

    Article  Google Scholar 

  27. H. Hu, J. Zhao, X. Liu, Y. Guo, Magnetic field and force calculation in linear permanent-magnet synchronous machines accounting for longitudinal end effect. IEEE Trans. Industr. Electron. 63(12), 7632–7643 (2016)

    Article  Google Scholar 

  28. S. Gruber, C. Junge, R. Wegener, S. Soter, Reduction of detent force caused by the end effect of a high thrust tubular PMLSM using a genetic algorithm and FEM, in Proceedings of the IEEE Annual Conference on Industrial Electronics Society (IECON), Glendale, Arizona, USA, Nov 2010, pp. 968-973

    Google Scholar 

  29. Q. Wang, J. Wang, Assessment of cogging-force-reduction techniques applied to fractional-slot linear permanent magnet motors equipped with non-overlapping windings. IET Electr. Power Appl. 10(8–9), 697–705 (2016)

    Article  Google Scholar 

  30. A. Souissi, M.W. Zouaghi, I. Abdennadher, A. Masmoudi, MEC-based modeling and sizing of a tubular linear PM synchronous machine. IEEE Trans. Ind. Appl. 51(3), 2181–2194 (2015)

    Article  Google Scholar 

  31. A. Souissi, I. Abdennadher, A. Masmoudi, On the stator magnetic circuit design of tubular-linear PM synchronous machines: A comparison between three topologies, in Proceedings of the International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART) (Kuwait-City, Kuwait, 2015), pp. 1–8

    Google Scholar 

  32. H. Bai et al., Incorporating the effects of magnetic saturation in a coupled-circuit model of a claw-pole alternator. IEEE Trans. Energy Convers. 22(2), 290–298 (2007)

    Article  MathSciNet  Google Scholar 

  33. M.L. Bash, J.M. Williams, S.D. Pekarek, Incorporating motion in mesh-based magnetic equivalent circuits. IEEE Trans. Energy Convers. 25(2), 329–338 (2010)

    Article  Google Scholar 

  34. M.L. Bash, S. Pekarek, Analysis and validation of a populationbased design of a wound-rotor synchronous machine. IEEE Trans. Energy Convers. 27(3), 603–614 (2012)

    Article  Google Scholar 

  35. D. Elloumi, A. Ibala, R. Rebhi, A. Masmoudi, Lumped circuit accounting for the rotor motion dedicated to the investigation of the time-varying features of claw pole topologies. IEEE Trans. Magn. 51(5), 8105108(1–8) (2015)

    Article  Google Scholar 

  36. M.W. Zouaghi, I. Abdennadher, A. Masmoudi, Lumped circuit-based sizing of quasi-Halbach PM excited T-LSMs: application to free piston engines. IET Electr. Power Appl. 11(4), 557–566 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Souissi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Souissi, A., Abdennadher, I., Masmoudi, A. (2019). Tubular-Linear Synchronous Machines: Application to Wave Energy Harvesting. In: Linear Synchronous Machines. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-0423-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0423-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0422-4

  • Online ISBN: 978-981-13-0423-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics