Skip to main content

Linear Machines: State of the Art with Emphasis on Sustainable Applications

  • Chapter
  • First Online:
  • 558 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

The chapter is aimed at a state of the art related to the integration of linear machines in sustainable applications. Prior to do so, the study is initiated by a review of the topological variety of linear machines with their classification according to the morphology and the AC-type. Then, selected sustainable applications equipped with linear machines are briefly described with emphasis on those applied to mobility and free and renewable energy harvesting. Regarding mobility, the selected applications are free piston engines, electromagnetic suspensions, MAGLEV trains, and ropoless elevators. Concerning energy harvesting applications, the selected applications are human body motion energy, vibration-based energy, and wave energy conversion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Xia, L. Guo, H. Wang, Modeling and analyzing of magnetic field of segmented halbach array permanent magnet machine considering gap between segments. IEEE Trans. Magn. 50(12), 8106009 (2014)

    Article  Google Scholar 

  2. K. Halbach, Design of permanent magnet multipole magnets with oriented rare earth cobalt material. J. Nucl. Instrum. Methods 169(1), 1–10 (1980)

    Article  Google Scholar 

  3. Y. Sui, P. Zheng, B. Yu, L. Cheng, J. Liu, Research on a tubular yokeless PM linear machine, in Proceedings of the IEEE International Magnetics Conference, Beijing, China, May 2015

    Google Scholar 

  4. M. Galea, L. Papini, H. Zhangand, C. Gerada, T. Hamiti, Demagnetization analysis for halbach array configurations in electrical machines. IEEE Trans. Magn. 51(9), 810730 (2015)

    Article  Google Scholar 

  5. A.M. EL-Refaie, T.M. Jahns, Optimal flux weakening in surface PM machines using fractional-slot concentrated windings. IEEE Trans. Ind. Appl. 41(3), 790–800 (2005)

    Article  Google Scholar 

  6. L. Alberti, M. Barcaro, N. Bianchi, Design of a low-torque-ripple fractional-slot interior permanent-magnet motor. IEEE Trans. Ind. Appl. 50(3), 1801–1808 (2014)

    Article  Google Scholar 

  7. I. Abdennadher, A. Masmoudi, Armature design of low-voltage FSPMSMs: an attempt to enhance the open-circuit fault tolerance capabilities. IEEE Trans. Ind. Appl. 51(6), 4392–4403 (2015)

    Article  Google Scholar 

  8. N. Bianchi, L. Alberti, M. Barcaro, Design and tests of a four-layer fractional-slot interior permanent-magnet motor. IEEE Trans. Ind. Appl. 52(3), 2234–2240 (2016)

    Article  Google Scholar 

  9. S.G. Min, G. Bramerdorfer, B. Sarlioglu, Analytical modeling and optimization for electromagnetic performances of fractional-slot PM brushless machines. IEEE Trans. Ind. Electron. 65(5), 4017–4027 (2018)

    Article  Google Scholar 

  10. A. Masmoudi, A. Masmoudi, 3-D analytical model with the end effect dedicated to the prediction of PM eddy-current loss in FSPMMs. IEEE Trans. Magn. 51(4), 8103711 (2015)

    Google Scholar 

  11. P. Zheng, C. Tong, J. Bai, B. Yu, Y. Sui, W. Shi, Electromagnetic design and control strategy of an axially magnetized permanent-magnet linear alternator for free-piston stirling engines. IEEE Trans. Ind. Appl. 48(6), 2230–2239 (2012)

    Article  Google Scholar 

  12. J. Wang, M. West, D. Howe, H.Z.-D.L. Parra, W.M. Arshad, Design and experimental verification of a linear permanent magnet generator for a free-piston energy converter. IEEE Trans. Energy Convers. 22(2), 299–306 (2007)

    Article  Google Scholar 

  13. M.W. Zouaghi, I. Abdennadher, A. Masmoudi, No-load features of T-LSMs with quasi-Halbach magnets: application to free piston engines. IEEE Trans. Energy Convers. 31(4), 1591–1600 (2016)

    Article  Google Scholar 

  14. P. Zheng, C. Tong, G. Chen, R. Liu, Y. Sui, W. Shi, S. Cheng, Research on the magnetic characteristic of a novel transverse-flux PM linear machine used for freepiston energy converter. IEEE Trans. Magn. 47(5), 1082–1085 (2011)

    Article  Google Scholar 

  15. T.T. Dang, M. Ruellan, L. Prevond, H.B. Ahmed, B. Multon, Sizing optimization of tubular linear induction generator and its possible application in high acceleration free-piston stirling microcogeneration. IEEE Trans. Ind. Appl. 51(5), 3716–3733 (2015)

    Article  Google Scholar 

  16. E. Jordan, Generator of electric current, US Patent No. 1544010, June 1925

    Google Scholar 

  17. Toyota Central R&D Labs., Inc., Free piston engine linear generator “FPEG” (2014), www.tytlabs.com/tech/fpeg/index.html

  18. H. Kosaka, T. Akita, K. Moriya, S. Goto, Y. Hotta, T. Umeno, K. Nakakita, Development of free piston engine linear generator system part 1-investigation of fundamental characteristics, SAE Technical Paper, No. 2014-01-1203 (2014)

    Google Scholar 

  19. S. Goto, K. Moriya, H. Kosaka, T. Akita, Y. Hotta, T. Umeno, K. Nakakita, Development of free piston engine linear generator system part 2-investigation of control system for generator, SAE Technical Paper, No. 2014-01-1193 (2014)

    Google Scholar 

  20. S. Schneider, F. Rinderknecht, H.E. Friedrich, Design of future concepts and variants of the free piston linear generator, in Proceedings of the 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-carlo, Monaco, Mar 2014

    Google Scholar 

  21. B.L.J. Gysen, J.J.H. Paulides, J.L.G. Janssen, E.A. Lomonova, Active electromagnetic suspension system for improved vehicle dynamics. IEEE Trans. Veh. Technol. 59(3), 1156–1163 (2010)

    Article  Google Scholar 

  22. H.M. Isa, W.N.L. Mahadi, R. Ramli, M.A. Abidin, A review on electromagnetic suspension systems for passenger vehicle, in Proceedings of the International Conference on Electrical, Control and Computer Engineering (INECCE), Kuantan, Malaysia, June 2011, pp. 399–403

    Google Scholar 

  23. J.J.H. Paulides, L. Encica, E.A. Lomonova, A.J.A. Vandenput, Design considerations for a semi-active electromagnetic suspension system. IEEE Trans. Magn. 42(10), 3446–3448 (2006)

    Article  Google Scholar 

  24. B.L.J. Gysen, J.L.G. Janssen, J.J.H. Paulides, E.A. Lomonova, Design aspects of an active electromagnetic suspension system for automotive applications. IEEE Trans. Ind. Appl. 45(5), 1589–1597 (2009)

    Article  Google Scholar 

  25. B.L.J. Gysen, T.P.J. van der Sande, J.J.H. Paulides, E.A. Lomonova, Efficiency of a regenerative direct-drive electromagnetic active suspension. IEEE Trans. Veh. Technol. 60(4), 1384–1393 (2011)

    Article  Google Scholar 

  26. J. Lin, K.W.E. Cheng, Z. Zhang, N.C. Cheung, X. Xue, Adaptive sliding mode technique-based electromagnetic suspension system with linear switched reluctance actuator. IET Electr. Power Appl. 9(1), 50–59 (2015)

    Article  Google Scholar 

  27. A. Zehden, Elektrische bef orderungsanlage unter benutzung eines wanderfeldmotors, German Patent no. 140958, June 1902

    Google Scholar 

  28. W. Xu, J.G. Zhu, Y. Zhang, Y. Li, Y. Wang, Y. Guo, An improved equivalent circuit model of a single-sided linear induction motor. IEEE Trans. Veh. Technol. 59(5), 2277–2289 (2010)

    Article  Google Scholar 

  29. J.-Q. Li, W.-L. Li, G.-Q. Deng, Z. Ming, Continuous-behavior and discretetime combined control for linear induction motor-based urban rail transit. IEEE Trans. Magn. 52(7), 8500104 (2016)

    Google Scholar 

  30. R. Cao, M. Cheng, C. Mi, W. Hua, X. Wang, W. Zhao, Modeling of a complementary and modular linear flux-switching permanent magnet motor for urban rail transit applications. IEEE Trans. Energy Convers. 27(2), 489–497 (2012)

    Article  Google Scholar 

  31. H. Ohsaki, Superconducting Maglev—development and commercial service plan in Japan, in Plenary session presented in the 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Kuwait City, Kuwait, Nov 2015

    Google Scholar 

  32. Q. Lu, Y. Li, X. Shen, Y. Ye, Y. Fang, Y. He, Analysis of linear induction motor applied in low-speed maglev train, in Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, Oct 2012

    Google Scholar 

  33. Y. Guo, W. Xu, J. Zhu, H. Lu, Y. Wang, J. Jin, Design and analysis of a linear induction motor for a prototype HTS maglev transportation system, in Proceedings of the International Conference on Applied Superconductivity and Electromagnetic Devices, Chengdu, China, Sept 2009, pp. 81–84

    Google Scholar 

  34. Z. Deng, W. Zhang, J. Zheng, Y. Ren, D. Jiang, X. Zheng, J. Zhang, P. Gao, Q. Lin, B. Song, C. Deng, A high-temperature superconducting maglev ring test line developed in Chengdu, China. IEEE Trans. Appl. Supercond. 26(6), 3602408(1–8) (2016)

    Article  Google Scholar 

  35. H.-W. Cho, H.-K. Sung, S.-Y. Sung, D.-J. You, S.-M. Jang, Design and characteristic analysis on the short-stator linear synchronous motor for high-speed maglev propulsion. IEEE Trans. Magn. 44(11), 4369–4372 (2008)

    Article  Google Scholar 

  36. M.S. Hosseini, S. Vaez-Zadeh, Modeling and analysis of linear synchronous motors in high-speed maglev vehicles. IEEE Trans. Magn. 46(7), 2656–2664 (2010)

    Article  Google Scholar 

  37. J. Lee, J. Jo, Y. Han, C. Lee, Development of the linear synchronous motor propulsion testbed for super speed maglev, in Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), Busan, South Korea, Oct 2013, pp. 1936–1938

    Google Scholar 

  38. L. Yan, The linear motor powered transportation development and application in China. Proc. IEEE 97(11), 1872–1880 (2009)

    Article  Google Scholar 

  39. S. Masoudi, M.R. Feyzi, M.B.B. Sharifan, Force ripple and jerk minimisation in double sided linear switched reluctance motor used in elevator application. IET Electr. Power Appl. 10(6), 508–516 (2016)

    Article  Google Scholar 

  40. H.S. Lim, R. Krishnan, Ropeless elevator with linear switched reluctance motor drive actuation systems. IEEE Trans. Ind. Electr. 54(4), 2209–2218 (2007)

    Article  Google Scholar 

  41. S.-G. Lee, S.-A. Kim, S. Saha, Y.-W. Zhu, Y.-H. Cho, Optimal structure design for minimizing detent force of PMLSM for a ropeless elevator. IEEE Trans. Magn. 50(1), 4001104 (2014)

    Google Scholar 

  42. X. Xu, X. Wang, S. Yuan, H. Feng, Optimization of vertical linear synchronous motor for ropeless elevator with INGA method, in Proceedings of the International Conference on Electrical and Control Engineering (ICECE), Wuhan, China, June 2010, pp. 3965–3968

    Google Scholar 

  43. Z. Piech, T. Witczak, Ropeless elevator system, US Patent, Ref. US 2016/0297646 A1, Oct 2016

    Google Scholar 

  44. Z. Yang, A. Khaligh, A flat linear generator with axial magnetized permanent magnets with reduced accelerative force for backpack energy harvesting, in Proceedings of the IEEE Twenty-Seventh Annual Applied Power Electronics Conference and Exposition (APEC), Florida, USA, Feb 2012, pp. 2534–2541

    Google Scholar 

  45. C. Ma, W. Zhao, L. Qu, Design optimization of a linear generator with dual halbach array for human motion energy harvesting, in Proceedings of the IEEE International Electric Machines & Drives Conference (IEMDC), Idaho, USA, May 2015, pp. 703–708

    Google Scholar 

  46. P. Zeng, H. Chen, Z. Yang, A. Khaligh, Unconventional wearable energy harvesting from human horizontal foot motion, in Proceedings of the 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Virginia, USA, Mar 2011, pp. 258–264

    Google Scholar 

  47. J.-X. Shen, C.-F. Wang, P.C.-K. Luk, D.-M. Miao, D. Shi, C. Xu, A shoe-equipped linear generator for energy harvesting. IEEE Trans. Ind. Appl. 49(2), 990–996 (2013)

    Article  Google Scholar 

  48. K. McCarthy, M. Bash, S. Pekarek, Design of an air-core linear generator drive for energy harvest applications, in Proceedings of the 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Texas, USA, Feb 2008, pp. 1832–1838

    Google Scholar 

  49. A. Pirisi, M. Mussetta, F. Grimaccia, R.E. Zich, Novel speed-bump design and optimization for energy harvesting from traffic. IEEE Trans. Intell. Trans. Syst. 14(4), 1983–1991 (2013)

    Article  Google Scholar 

  50. L.A.J. Friedrich, J.J.H. Paulides, E.A. Lomonova, Modeling and optimization of a tubular generator for vibration energy harvesting application. IEEE Trans. Magn. 53(11), 8209804(1–4) (2017)

    Article  Google Scholar 

  51. I.-C. Gros, D.-C. Popa, P. Dorel Teodosescu, M. Radulescu, A survey on green energy harvesting applications using linear electric generators, in Proceedings of the 2017 International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, June 2017, pp. 1–5

    Google Scholar 

  52. J. Ye, Z. Lu, C. Chen, M. Wang, Power analysis of a single degree of freedom (DOF) vibration energy harvesting system considering controlled linear electric machines, in Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, June 2017, pp. 158–163

    Google Scholar 

  53. H. Polinder, M.E.C. Damen, F. Gardner, Linear PM generator system for wave energy conversion in the AWS. IEEE Trans. Energy Convers. 19(3), 583–589 (2004)

    Article  Google Scholar 

  54. D. Elwood, S.C. Yim, J. Prudell, C. Stillinger, A. von Jouanee, T. Brekken, A. Brown, R. Paasch, Design, construction, and ocean testing of a taut-moored dual-body wave energy with a linear generator power take-off. Renew. Energy 35(3), 348–354 (2010)

    Article  Google Scholar 

  55. A. Savin, O. Svensson, M. Leijon, Research article study of the operation characteristics of a point absorbing direct driven permanent magnet linear generator deployed in the baltic sea. IET Renew. Power Gener. 10(8), 1204–1210 (2016)

    Article  Google Scholar 

  56. A. Savin, O. Svensson, M. Leijon, Estimation of stress in the inner framework structure of a single heaving buoy wave energy converter. IEEE J. Ocean. Eng. 37(2), 309–317 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Souissi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Souissi, A., Abdennadher, I., Masmoudi, A. (2019). Linear Machines: State of the Art with Emphasis on Sustainable Applications. In: Linear Synchronous Machines. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-0423-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0423-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0422-4

  • Online ISBN: 978-981-13-0423-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics