Skip to main content

Finite Lifetime Estimation of Mechanical Assemblies Subjected to Fretting Fatigue Loading

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Fracture Fatigue and Wear (FFW 2018)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

This paper proposes a new design method for predicting the finite lifetime of mechanical assemblies subjected to constant amplitude (CA) fretting fatigue loading. The proposed methodology is based on the use of the Modified Wӧhler Curve Method (MWCM) applied in conjunction with the Theory of Critical Distance (TCD) and the Shear Stress-Maximum Variance Method (τ-MVM). In more detail, this engineering approach uses the τ-MVM to calculate the stress quantities relative to the critical plane, whose orientation is determined numerically by locating the plane containing the direction experiencing the maximum variance of the resolved shear stress. To estimate the fretting fatigue lifetime, the time-variable linear elastic stress quantities are post processed according to the MWCM applied in conjunction with the TCD. The proposed approach was checked against experimental data taken from the literature and generated by testing specimens made of aluminium alloy Al 7075-T6. The extensive validation supports the idea that the MWCM applied in conjunction with both the TCD and τ-MVM can be suitable to predict the finite lifetime of mechanical assemblies subjected to fretting fatigue loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeung, H.K., Kwon, J.D., Lee, C.Y.: Crack initiation and propagation under fretting fatigue of inconel 600 alloy. J. Mech. Sci. Technol. 29(12), 5241–5244 (2015)

    Article  Google Scholar 

  2. Nowell, D., Dini, D., Dyson, I.: The use of notch and short crack approaches to fretting fatigue threshold prediction: theory and experimental validation. Tribol. Int. 39, 1158–1165 (2006)

    Article  Google Scholar 

  3. Taylor, D.: Geometrical effects in fatigue: a unifying theoretical model. Int. J. Fatigue 21, 413–420 (1999)

    Article  Google Scholar 

  4. Dini, D., Nowell, D., Dyson, I.N.: Experimental validation of a short crack approach for fretting fatigue threshold prediction. In: 12th International Conference on Experimental Mechanics, Bari, Italy, 29 August–2 September 2004

    Google Scholar 

  5. Noraphaiphipaksa, L., Manonukul, A., Kanchanomai, C.: Fretting fatigue with cylindrical-on-flat contact: crack nucleation, crack path and fatigue life. MDPI 10, 1–21 (2017)

    Google Scholar 

  6. Suresh, S.: Fatigue of materials, Cambridge. Cambridge University Press, UK (1998)

    Book  Google Scholar 

  7. Erdogan, G., Sih, G.: On the crack extension in plates under plane loading and transverse shear. ASME J. Basics Eng. 85(4), 519–527 (1963)

    Article  Google Scholar 

  8. Araújo, J., Susmel, L., Pires, M., Castro, F.: A multiaxial stress-based critical distance methodology to estimate fretting fatigue life. Tribol. Int. 108, 2–6 (2017)

    Article  Google Scholar 

  9. Araújo, J., Susmel, L., Taylor, D., Ferro, J., Mamiya, E.: on the use of the theory of critical distances and the modified Wӧhler curve method to estimate fretting fatigue strength of cylindrical contacts. Int. J. Fatigue 29, 95–107 (2007)

    Article  Google Scholar 

  10. Araújo, J.A., Susmel, L., Taylor, D., Ferro, J.C.T., Ferreira, J.L.A.: On the prediction of high-cycle fretting strength: theory of critical distances vs. hot spot approach. Eng. Frac. Mech. 75, 1763–1778 (2008)

    Article  Google Scholar 

  11. Susmel, L.: Multiaxial notch fatigue: from nominal to local stress-strain quantities. Woodhead & CRC, Cambridge (2009)

    Chapter  Google Scholar 

  12. Taylor, D.: The Theory of Critical Distances: A New Perspective in Fracture Mechanics. Elsevier, Oxford (2007)

    Google Scholar 

  13. Mamiya, E.N., Araújo, J.A.: Fatigue limit under multiaxial loadings: on the definition of the equivalent shear stress. Mech. Res. Commun. 29, 141–151 (2000)

    Article  Google Scholar 

  14. Araújo, J.A., Dantas, A.P., Castro, A.P., Mamiya, E.N., Ferreira, J.L.A.: On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue. Int. J. Fatigue 33, 1092–1100 (2011)

    Article  Google Scholar 

  15. Araújo, J.A., Carpinteri, A., Ronchei, C., Spagnoli, A., Vantadori, S.: An alternative definition of the shear stress amplitude based on the maximum rectangular hull method and application to the C-S (Carpinteri-Spagnoli) criterion. Fatigue Fract. Eng. Mater. Struct. 37, 764–771 (2014)

    Article  Google Scholar 

  16. Carpinteri, A., Ronchei, C., Spagnoli, A., Vantadori, S.: On the use of the Prismatic Hull method in a critical plane-based multiaxial fatigue criterion. Int. J. Fatigue 68, 159–167 (2014)

    Article  Google Scholar 

  17. Nowell, D.: An analysis of fretting fatigue. Ph.D. thesis, University of oxford, Oxford, UK (1988)

    Google Scholar 

  18. Giannakopoulos, A.E., Lindley, T.C., Suresh, S.: Similarities of stress concentrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation. Fatigue Fract. Eng. Mater. Struct. 23, 561–571 (2000)

    Article  Google Scholar 

  19. Susmel, L.: Four stress analysis strategies to use the modified Wӧhler curve method to perform the fatigue assessment of weldments subjected to constant and variable amplitude multiaxial fatigue loading. Int. J. Fatigue 67, 38–54 (2014)

    Article  Google Scholar 

  20. Susmel, L., Tovo, R., Benasciutti, D.: A novel engineering method based on the critical plane concept to estimate lifetime of weldments subjected to variable amplitude multiaxial fatigue loading. Fatigue Fract. Eng. Mater. Struct. 32, 441–459 (2009)

    Article  Google Scholar 

  21. Susmel, L., Lazzarin, P.: A bi-parametric modified Wӧhler curve for high cycle multiaxial fatigue assessment. Fatigue Fract. Eng. Mater. Struct. 25, 63–78 (2002)

    Article  Google Scholar 

  22. Susmel, L.: Multiaxial fatigue limits and material sensitivity to non-zero mean stresses normal to critical planes. Fatigue Fract. Engng. Mater. Struct 31(3–4), 295–309 (2008)

    Article  Google Scholar 

  23. Kaufman, R.P., Topper, T.: The influence of static mean stresses applied normal to the maximum shear planes in multiaxial fatigue. In: Biaxial and Multiaxial Fatigue and Fracture. Elsevier and ESIS, Oxford, pp. 123–143 (2003)

    Google Scholar 

  24. Lazzarin, P., Susmel, L.: A stress-based method to predict lifetime under multiaxial fatigue loadings. Fatigue Fract. Eng. Mater. Struct. 26, 1171–1187 (2003)

    Article  Google Scholar 

  25. Susmel, L., Tovo, R., Lazzarin, P.: The mean stress effect on the high-cycle fatigue strength from a multiaxial point of view. Int. J. Fatigue 27, 928–943 (2005)

    Article  Google Scholar 

  26. Susmel, L., Taylor, D.: The modified Wӧhler curve method applied along with the Theory of Critical Distances to estimate finite life of notched components subjected to complex multiaxial loading paths. Fatigue Fract. Eng. Mater. Struct. 31, 1047–1064 (2008)

    Article  Google Scholar 

  27. Susmel, L., Taylor, D.: A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading. Int. J. Fatigue 38, 7–24 (2012)

    Article  Google Scholar 

  28. Susmel, L., Taylor, D.: A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime. Fatigue Fract. Eng. Mater. Struct. 30, 567–581 (2007)

    Article  Google Scholar 

  29. Susmel, L.: A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems. Int. J. Fatigue 32, 1875–1883 (2010)

    Article  Google Scholar 

  30. Susmel, L., Tovo, R., Socie, D.: Estimating the orientation of stage I cracks paths through the direction of maximum variance of the resolved shear stress. Int. J. Fatigue 58, 94–101 (2014)

    Article  Google Scholar 

  31. Wittkowsky, B.U., Birtch, P.R., Dominguez, J., Suresh, S.: An experimental investigation of fretting fatigue with spherical contact in 7075-T6 aluminum alloy. In: Hoeppner, D.W., Chandrasekaran, V., Elliott, C.B. (eds.) Fretting Fatigue: Current Technology and Practices, ASTM STP 1367, West Conshohocken, pp. 213–227 (2000)

    Google Scholar 

  32. Navarro, C., Garcia, M., Dominguez, J.: A procedure for estimating the total life in fretting fatigue. Fatigue Fract. Eng. Mater. Struct. 26(5), 459–468 (2003)

    Article  Google Scholar 

  33. Hills, D., Nowell, D.: Mechanics of Fretting Fatigue. Kluwer Academic, Dordrecht (1994)

    Book  Google Scholar 

  34. Hojjati-Talemi, R., Wahab, A., Pauw, J., Baets, P.: Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribol. Int. 76, 73–91 (2014)

    Article  Google Scholar 

  35. Juvinall, R.C., Marshek, K.M.: Fundamentals of Machine Component Design. Wiley, New York (1991)

    Book  Google Scholar 

  36. Lee, Y.-L., Pan, J., Hathaway, R.B., Barkey, M.E.: Fatigue Testing and Analysis. Elsevier Butterworth-Heinemann, Oxford (2005)

    Google Scholar 

  37. Susmel, L.: On the estimation of the material fatigue properties required to perform the multiaxial fatigue assessment. Fatigue Fract. Eng. Mater. Struct. 36, 565–585 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

We are immensely grateful to EPSRC (www.epsrc.ac.uk) and Cummins Inc. (www.cummins.com) for funding this Industrial CASE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Teuchou Kouanga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teuchou Kouanga, C.V. et al. (2019). Finite Lifetime Estimation of Mechanical Assemblies Subjected to Fretting Fatigue Loading. In: Abdel Wahab, M. (eds) Proceedings of the 7th International Conference on Fracture Fatigue and Wear. FFW 2018. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0411-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0411-8_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0410-1

  • Online ISBN: 978-981-13-0411-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics