Skip to main content

Deformation Behavior and Fracture of Al-CuZr Nano-Laminates: A Molecular Dynamics Simulation Study

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Fracture Fatigue and Wear (FFW 2018)

Abstract

In this paper, we report classical molecular dynamics (MD) simulation deformation studies and fracture behavior of nano-crystalline Al (metal)-Cu50Zr50 (metallic glass) nano-laminates. The samples for the above studies consist of alternate layers of nano-crystalline aluminum and Cu50Zr50 metallic glass (MG). The nano-laminates models of 150 Å × 50 Å × 15 Å have been constructed by taking Al and Cu50Zr50 MG of three different widths ranging from 1 nm–5 nm. The Cu50Zr50 MG is prepared by randomly generating the coordinates and replacing 50% copper atoms by zirconium atoms. EAM (Embedded Atom Method) potential is used for modeling the interaction between Al-Cu-Zr atoms. The models are deformed at a temperature of 300 K and strain rate of 1010 s−1 under mode-I loading conditions. Periodic boundary conditions are applied along the loading direction, while non-periodic along the thickness and width. It is observed that with an increase in width of the MG the nano-laminates strength increases (1.8 GPa). Ductile facture is observed in all the models. The grain boundary process is found to be active in pure nano-crystalline Al while it is insignificant in the laminates. Amorphization is observed in all the laminates at larger strains. The present study gives a significant insight into nano-laminates deformation behavior and underlying mechanism and at metal-metallic glass interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaneko, T., Tsukamoto, H.: Composite material for medical applications, tube for medical applications and medical instrument. US Pat. App. 10/151,870 (2002)

    Google Scholar 

  2. Kelly, A., Zweben, C.: Comprehensive composite materials (2000)

    Chapter  Google Scholar 

  3. Middleton, D.: Composite materials in aircraft structures (1990)

    Google Scholar 

  4. Prasad, S., Asthana, R.: Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17(3), 445–453 (2004)

    Article  Google Scholar 

  5. Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R. Rep. 44, 45–89 (2004)

    Article  Google Scholar 

  6. Scudino, S., Liu, G., Prashanth, K.G.G., et al.: Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater. 57, 2029–2039 (2009)

    Article  Google Scholar 

  7. Lee, M.: Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process. Scr. Mater. 50, 1367–1371 (2004)

    Article  Google Scholar 

  8. Yu, P., Kim, K.B., Das, J., et al.: Fabrication and mechanical properties of Ni–Nb metallic glass particle-reinforced Al-based metal matrix composite. Scr. Mater. 54, 1445–1450 (2006)

    Article  Google Scholar 

  9. Ward, L., Miracle, D., Windl, W., et al.: Structural evolution and kinetics in Cu-Zr metallic liquids from molecular dynamics simulations. Phys. Rev. B 88, 134205 (2013)

    Article  Google Scholar 

  10. Hirel, P.: Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015)

    Article  Google Scholar 

  11. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  12. Zhou, X.W., Johnson, R.A., Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004)

    Article  Google Scholar 

  13. Gupta, P., Pal, S., Yedla, N.: Molecular dynamics based cohesive zone modeling of Al (metal)–Cu 50 Zr 50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms. Mater. Des. 105, 41–50 (2016)

    Article  Google Scholar 

  14. Gupta, P., Yedla, N.: Dislocation and structural studies at metal-metallic glass interface at low temperature. J. Mater. Eng. Perform. 26, 5694–5704 (2017)

    Article  Google Scholar 

  15. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 15012 (2010)

    Article  Google Scholar 

  16. Yamakov, V., Wolf, D., Phillpot, S.R., et al.: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 45–48 (2002)

    Article  Google Scholar 

  17. Zhou, K., Liu, B., Yao, Y., Zhong, K.: Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics. Mater. Sci. Eng. A 615, 92–97 (2014)

    Article  Google Scholar 

  18. Schuh, C.A., Lund, A.C.: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449–452 (2003)

    Article  Google Scholar 

  19. Yedla, N., Ghosh, S.: Nature of atomic trajectories and convective flow during plastic deformation of amorphous Cu50Zr50 alloy at room temperature-classical molecular dynamics studies. Intermetallics 80, 40–47 (2017)

    Article  Google Scholar 

  20. Gutiérrez, G., Kiwi, M., Ramírez, R.: Amorphization in the vicinity of a grain boundary: a molecular-dynamics approach. Phys. Rev. B – Condens. Matter Mater. Phys. 54, 11701–11705 (1996)

    Article  Google Scholar 

  21. Han, S., Zhao, L., Jiang, Q., Lian, J.: Deformation-induced localized solid-state amorphization in nanocrystalline nickel. Sci. Rep. 2, 1–5 (2012)

    Google Scholar 

  22. Sutrakar, V.K., Mahapatra, D.R.: Superplasticity in intermetallic NiAl nanowires via atomistic simulations. Mater. Lett. 64, 879–881 (2010)

    Article  Google Scholar 

  23. Chen, W., Wang, Y., Qiang, J., Dong, C.: Bulk metallic glasses in the Zr-Al-Ni-Cu system. Acta Mater. 51, 1899–1907 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natraj Yedla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, P., Yedla, N. (2019). Deformation Behavior and Fracture of Al-CuZr Nano-Laminates: A Molecular Dynamics Simulation Study. In: Abdel Wahab, M. (eds) Proceedings of the 7th International Conference on Fracture Fatigue and Wear. FFW 2018. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0411-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0411-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0410-1

  • Online ISBN: 978-981-13-0411-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics