Skip to main content

Friction Stir Welding for Joining of Polymers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Abstract

The chapter focuses on the welding of thermoplastic polymers. The use of thermoplastics has increased tremendously in the manufacturing industries due to their light-weight characteristic. A detailed study regarding the polymers has been presented and the importance of thermoplastics has also been outlined. The joining technique which has been used in the present work is Friction Stir Welding (FSW). FSW has been one of the major achievements in the field of current welding technologies. Since its invention, the process has been under tremendous research and has been employed to join different metallic alloys of aluminium, magnesium, copper, titanium, etc. The process has also been used to join materials in different joint configurations. Recently, it has been used to weld the thermoplastic materials. An introduction to the FSW technique, the working elements of the process and its constituents have been presented in the chapter. Before the discussion of application of FSW to thermoplastic joining, the other available methods to join thermoplastics such as adhesive bonding and mechanical fastening have been discussed. The literature available with respect to the joining of thermoplastics using FSW has been discussed followed by an experimental study on high density polyethylene (HDPE) sheets. The results of the study have been presented and the relevant conclusions have been drawn.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chawla, K.K.: Composite Materials. Springer, New York (1998)

    Book  Google Scholar 

  2. Norris, G., Wagner, M.: Boeing 787 Dreamliner (2009). Available: http://www.modernairliners.com/boeing-787-dreamliner/boeing-787-dreamliner-specs/

  3. Plastics—The Facts 2010, An analysis of European plastics production, demand and waste data (2010)

    Google Scholar 

  4. Fried, J.R.: Polymer Science and Technology, 3rd edn., vol. 40, no. 6. Prentice Hall, Englewood Cliffs (2014)

    Google Scholar 

  5. Amancio Filho, S.T.: Friction riveting development and analysis of a new joining technique for polymer-metal multi-material structures (2011)

    Google Scholar 

  6. Kah, P., Suoranta, R., Martikainen, J., Magnus, C.: Techniques for joining dissimilar materials: Metals and polymers. Rev. Adv. Mater. Sci. 36, 152–164 (2014)

    Google Scholar 

  7. Raithel, S.T.: Kunstoffe International, Lightweight and Innovative (2015). Available: http://akro-plastic.com/file/i-pdf_akro_kuint_2015_09_pdf. Accessed 28 Mar 2016

  8. Tanasa, F., Zanoaga, M.: Fiber-reinforced polymer composites as structural materials for aeronautics. In: International Conference of Scientific Paper. AFASES (2013)

    Google Scholar 

  9. Sabreen, S.: Preparing plastics for paintings. Adhesives and Adhesion (2012). Available: http://www.adhesionbonding.com/2012/03/18/preparing-plastics-for-painting/. Accessed 20-Jun-2017

  10. Yousefpour, A., Hojjati, M., Immarigeon, J.-P.: Fusion bonding/welding of thermoplastic composites. J. Thermoplast. Compos. Mater. 17(4), 303–341 (2004)

    Article  Google Scholar 

  11. Messler, R.W.: Joining composite materials and structures: some thought-provoking possibilities. J. Thermoplast. Compos. Mater. 17(1), 51–75 (2004)

    Article  Google Scholar 

  12. Magness, F.H.: Joining of polymer composite materials—a survey, pp. 1–16. Mechanics of Materials Group, Engineering Science Division (1990)

    Google Scholar 

  13. Vinson, J.R.: Adhesive bonding of polymer composites. Polym. Eng. Sci. 29(19), 1325–1331 (1989)

    Article  Google Scholar 

  14. Adhesive Bonding of Composites. Available: https://compositesuk.co.uk/system/files/documents/Adhesive bonding of composites_0.pdf. [Accessed: 20-Jun-2017]

  15. Ashcroft, I.A., Hughes, D.J., Shaw, S.J.: Adhesive bonding of fibre reinforced polymer composite materials. Assem. Autom. 20(2), 150–161 (2000)

    Article  Google Scholar 

  16. Ritter, D.G.W.: Bonding of plastics. In: SPE ANTEC Indianapolis, pp. 562–564 (2016)

    Google Scholar 

  17. Baldwin, T.R.: Anaerobic adhesives. Mater. Sci. Technol. 2(1), 1–7 (1986)

    Article  Google Scholar 

  18. Thomas, W.M.: Fiction stir butt welding. PCT/GB92, 9125978.8 (1991)

    Google Scholar 

  19. Thomas, W.M., Johnson, K.I., Wiesner, C.S.: Friction stir welding-recent developments in tool and process technologies. Adv. Eng. Mater. 5(7), 485–490 (2003)

    Article  Google Scholar 

  20. Dawes, C.J.: An introduction to friction stir welding and its development. Weld. Met. Fabr. 63, 13 (1995)

    Google Scholar 

  21. Elangovan, K., Balasubramanian, V.: Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J. Mater. Process. Technol. 200(1–3), 163–175 (2008)

    Article  Google Scholar 

  22. Jain, R., et al.: Friction stir welding: scope and recent development, pp. 179–229 (2015)

    Google Scholar 

  23. Mishra, R.S., Ma, Z.Y.: Friction Stir Welding and Processing, vol. 50 (2005)

    Google Scholar 

  24. Neto, D.M., Neto, P.: Numerical modeling of friction stir welding process: a literature review. Int. J. Adv. Manuf. Technol. 65(1–4), 115–126 (2013)

    Article  Google Scholar 

  25. Lohwasser, D., Chen, Z: Friction stir welding related titles (2010)

    Book  Google Scholar 

  26. Kumar, A., Mahapatra, M.M., Jha, P.K., Mandal, N.R., Devuri, V.: Influence of tool geometries and process variables on friction stir butt welding of Al-4.5%Cu/TiC in situ metal matrix composites. Mater. Des. 59, 406–414 (2014)

    Article  Google Scholar 

  27. Salari, E., Jahazi, M., Khodabandeh, A., Ghasemi-Nanesa, H.: Influence of tool geometry and rotational speed on mechanical properties and defect formation in FS lap welded 5456 Al alloy sheets.pdf, vol. 58, pp. 381–389 (2014)

    Google Scholar 

  28. Vijay, S.J., Murugan, N.: Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10wt.% TiB2 metal matrix composite. Mater. Des. 31(7), 3585–3589 (2010)

    Article  Google Scholar 

  29. Malarvizhi, S., Balasubramanian, V.: Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum-AZ31B magnesium alloys. Mater. Des. 40, 453–460 (2012)

    Article  Google Scholar 

  30. Pixel by pixel, a masterpiece (2017). Available: https://www.apple.com/in/imac/design/. Accessed 10 May 2017

  31. Kusuda, Y.: Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle. Ind. Robot An Int. J. 40(3), 208–212 (2013)

    Article  Google Scholar 

  32. Toros, S., Ozturk, F., Kacar, I.: Review of warm forming of aluminum-magnesium alloys. J. Mater. Process. Technol. 207(1–3), 1–12 (2008)

    Article  Google Scholar 

  33. Galvão, I., Verdera, D., Gesto, D., Loureiro, A., Rodrigues, D.M.: Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper. J. Mater. Process. Technol. 213(11), 1920–1928 (2013)

    Article  Google Scholar 

  34. Li, X.W., Zhang, D.T., Qiu, C., Zhang, W.: Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Trans. Nonferrous Met. Soc. China (English Ed.) 22(6), 1298–1306 (2012)

    Article  Google Scholar 

  35. Tan, C.W., Jiang, Z.G., Li, L.Q., Chen, Y.B., Chen, X.Y.: Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding. Mater. Des. 51, 466–473 (2013)

    Article  Google Scholar 

  36. Bond Integrity in Aluminum-Copper Clad Metals. Materion Tech Briefs, Lincoln, USA. Available: https://materion.com/-/media/files/pdfs/technicalmaterials/bond-integrity-in-aluminum-copper-clad-metals.pdf. Accessed 03 May 2017

  37. Li, B., Zhang, Z., Shen, Y., Hu, W., Luo, L.: Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties. Mater. Des. 53, 838–848 (2014)

    Article  Google Scholar 

  38. Hassan, S.F., Gupta, M.: Development of high strength magnesium copper based hybrid composites with enhanced tensile properties. Mater. Sci. Technol. 19(2), 253–259 (2003)

    Article  Google Scholar 

  39. Kallee, S.W., Russell, M.J., Delany, F.: Friction stir welding of aluminium ships (2007). Available: http://www.twi-global.com/technical-knowledge/published-papers/friction-stir-welding-of-aluminium-ships-june-2007/

  40. Davenport, J., Kallee, S.W., Wylde, J.G.: Creating a stir in the rail industry (2015). Available: http://www.twi-global.com/technical-knowledge/published-papers/creating-a-stir-in-the-rail-industry-november-2001/

  41. Kallee, S.W.: Friction stir welding in series production (2017). Available: http://www.twi-global.com/technical-knowledge/published-papers/friction-stir-welding-in-series-production-october-2004/

  42. Arbegast, W.J.: A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr. Mater. 58(5), 372–376 (2008)

    Article  Google Scholar 

  43. Mishra, R.S., Mahoney, M.W.: Friction Stir Welding and Processing. ASM International, p. 368 (2007)

    Google Scholar 

  44. Nandan, R., Debroy, T., Bhadeshia, H.: Recent advances in friction-stir welding—process, weldment structure and properties. Prog. Mater Sci. 53(6), 980–1023 (2008)

    Article  Google Scholar 

  45. Strand, S.: Joining plastics—can friction stir welding compete? In: Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No.03CH37480), pp. 321–326 (2003)

    Google Scholar 

  46. Kiss, Z., Czigány, T.: Applicability of friction stir welding in polymeric materials. Period. Polytech. Mech. Eng. 51(1), 15 (2007)

    Article  Google Scholar 

  47. Scialpi, A., Troughton, M., Andrews, S., De Filippis, L.A.C.: In-line reciprocating friction stir welding of plastics. Join. Plast. von Kunststoffen Mag. 1, 1–9 (2007)

    Google Scholar 

  48. Nelson, T.W., Sorensen, C.D., John, C.J.: Friction stir welding of polymeric materials. US 6,811,632 B2 (2009)

    Google Scholar 

  49. Strand, S.R.: Effects of friction stir welding on polymer microstructure (2004)

    Google Scholar 

  50. Mendes, N., Loureiro, A., Martins, C., Neto, P., Pires, J.N.: Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater. Des. 58, 457–464 (2014)

    Article  Google Scholar 

  51. Pirizadeh, M., Azdast, T., Rash Ahmadi, S., Mamaghani Shishavan, S., Bagheri, A.: Friction stir welding of thermoplastics using a newly designed tool. Mater. Des. 54, 342–347 (2014)

    Article  Google Scholar 

  52. Panneerselvam, K., Lenin, K.: Joining of Nylon 6 plate by friction stir welding process using threaded pin profile. Mater. Des. 53, 302–307 (2014)

    Article  Google Scholar 

  53. Ahmadi, H., Arab, N.B.M., Ghasemi, F.A., Farsani, R.E.: Influence of pin profile on quality of friction stir lap welds in carbon fiber reinforced polypropylene composite. Int. J. Mech. Appl. 2(3), 24–28 (2012)

    Google Scholar 

  54. Mendes, N., Loureiro, A., Martins, C., Neto, P., Pires, J.N.: Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater. Des. 58, 457–464 (2014)

    Article  Google Scholar 

  55. Mendes, N., Loureiro, A., Martins, C., Neto, P., Pires, J.N.: Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Mater. Des. 64, 81–90 (2014)

    Article  Google Scholar 

  56. Arici, A., Sinmaz, T.: Effects of double passes of the tool on friction stir welding of polyethylene. J. Mater. Sci. 40(12), 3313–3316 (2005)

    Article  Google Scholar 

  57. Aydin, M.: Effects of welding parameters and pre-heating on the friction stir welding of UHMW-polyethylene. Polym. Plast. Technol. Eng. 49(6), 595–601 (2010)

    Article  Google Scholar 

  58. Bozkurt, Y.: The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Mater. Des. 35, 440–445 (2012)

    Article  Google Scholar 

  59. Payganeh, G.H., Arab, N.B.M., Asl, Y.D., Ghasemi, F.A., Boroujeni, M.S.: Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds. Int. J. Phys. Sci. 6(19), 4595–4601 (2011)

    Google Scholar 

  60. Jaiganesh, V., Maruthu, B., Gopinath, E.: Optimization of process parameters on friction stir welding of high density polypropylene plate. Procedia Eng. 97, 1957–1965 (2014)

    Article  Google Scholar 

  61. Melendez, M., Tang, W., Schmidt, C., McClure, J.C., Nunes, A.C., Murr, L.E.: Tool forces developed during friction stir welding, pp. 1–38 (2013)

    Google Scholar 

  62. Squeo, E.A., Bruno, G., Guglielmotti, A., Quadrini, F.: Friction stir welding of polyethylene sheets. Ann. “DUNĂREA JOS” Univ. Galati Fascicle V Technol. Mach. Build. 241–146 (2009)

    Google Scholar 

  63. Bagheri, A., Azdast, T., Doniavi, A.: An experimental study on mechanical properties of friction stir welded ABS sheets. Mater. Des. 43, 402–409 (2013)

    Article  Google Scholar 

  64. Shazly, M., El-raey, M.: Friction stir welding of polycarbonate sheets, pp. 555–563 (2014)

    Chapter  Google Scholar 

  65. Saeedy, S., Givi, M.K.B.: Proc. Inst. Mech. Eng. Part B  J. Eng. Manuf. Investig. Eff. Crit. Process Parameters (2011)

    Google Scholar 

  66. Amancio-Filho, S.T., dos Santos, J.F.: Joining of polymers and polymer-metal hybrid structures: Recent developments and trends. Polym. Eng. Sci. 49(8), 1461–1476 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjya K. Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, D., Sahu, S.K., Mahto, R.P., Pal, S.K., Pal, K. (2019). Friction Stir Welding for Joining of Polymers. In: Dixit, U., Narayanan, R. (eds) Strengthening and Joining by Plastic Deformation. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0378-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0378-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0377-7

  • Online ISBN: 978-981-13-0378-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics