Micropore-Arrayed Ultrathin Aluminum Foil for Oil/Water Separation and Particle Filtration

  • Guoqiang Li
Part of the Springer Theses book series (Springer Theses)


The separation of oil/water mixtures has become a global concern due to the serious oil pollution caused by discharging industrial oily wastewater, offshore oil accidents and marine transportation (Bi et al. in Adv Func Mater 22:4421–4425, 2012 [1]; Zhang et al. in Adv Func Mater 23:2881–2886, 2013 [2]; Ge et al. in Angew Chem 126:3686–3690 2014 [3]; Liu et al. in ACS Appl Mater Interfaces 6:12821–12826 2014 [4]).


  1. 1.
    Bi H, Xie X, Yin K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Func Mater. 2012;22(21):4421–5.CrossRefGoogle Scholar
  2. 2.
    Zhang X, Li Z, Liu K, et al. Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Func Mater. 2013;23(22):2881–6.CrossRefGoogle Scholar
  3. 3.
    Ge J, Ye YD, Yao HB, et al. Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation. Angew Chem. 2014;126(14):3686–90.CrossRefGoogle Scholar
  4. 4.
    Liu N, Cao Y, Lin X, et al. A facile solvent-manipulated mesh for reversible oil/water separation. ACS Appl Mater Interfaces. 2014;6(15):12821–6.CrossRefGoogle Scholar
  5. 5.
    Xu Z, Zhao Y, Wang H, et al. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation. Angew Chem. 2015;127(15):4610–3.CrossRefGoogle Scholar
  6. 6.
    Shi L, Chen K, Du R, et al. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation. J Am Chem Soc. 2016;138(20):6360–3.CrossRefGoogle Scholar
  7. 7.
    Zhang W, Lu X, Xin Z, et al. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale. 2015;7(46):19476–83.CrossRefGoogle Scholar
  8. 8.
    Wang B, Liang W, Guo Z, et al. Biomimetic superlyophobic and superlyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev. 2015;44(1):336–61.CrossRefGoogle Scholar
  9. 9.
    Yong J, Chen F, Yang Q, et al. Oil-water separation: a gift from the desert. Adv Mater Interfaces. 2016;3(7).Google Scholar
  10. 10.
    Gao X, Zhou J, Du R, et al. Robust superhydrophobic foam: a graphdiyne-based hierarchical architecture for oil/water separation. Adv Mater. 2016;28(1):168–73.CrossRefGoogle Scholar
  11. 11.
    Ma Q, Cheng H, Fane AG, et al. Recent development of advanced materials with special wettability for selective oil/water separation. Small. 2016;12(16):2186–202.CrossRefGoogle Scholar
  12. 12.
    Liu Y, Ma J, Wu T, et al. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl Mater Interfaces. 2013;5(20):10018–26.CrossRefGoogle Scholar
  13. 13.
    Ruan C, Ai K, Li X, et al. A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Ed. 2014;53(22):5556–60.CrossRefGoogle Scholar
  14. 14.
    Wu C, Huang X, Wu X, et al. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil/water separators. Adv Mater. 2013;25(39):5658–62.CrossRefGoogle Scholar
  15. 15.
    Greenewalt CH, Brandt W, Friel DD. Iridescent colors of hummingbird feathers. JOSA. 1960;50(10):1005–13.CrossRefGoogle Scholar
  16. 16.
    Wen Q, Di J, Jiang L, et al. Zeolite-coated mesh film for efficient oil-water separation. Chem Sci. 2013;4(2):591–5.CrossRefGoogle Scholar
  17. 17.
    Wang CF, Tzeng FS, Chen HG, et al. Ultraviolet-durable superhydrophobic zinc oxide-coated mesh films for surface and underwater-oil capture and transportation. Langmuir. 2012;28(26):10015–9.CrossRefGoogle Scholar
  18. 18.
    Yang J, Zhang Z, Xu X, et al. Superhydrophilic-superoleophobic coatings. J Mater Chem. 2012;22(7):2834–7.CrossRefGoogle Scholar
  19. 19.
    Zhang F, Zhang WB, Shi Z, et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv Mater. 2013;25(30):4192–8.CrossRefGoogle Scholar
  20. 20.
    Liu N, Chen Y, Lu F, et al. Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. ChemPhysChem. 2013;14(15):3489–94.CrossRefGoogle Scholar
  21. 21.
    Gao X, Xu LP, Xue Z, et al. Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. Adv Mater. 2014;26(11):1771–5.CrossRefGoogle Scholar
  22. 22.
    Yong J, Fang Y, Chen F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions. Appl Surf Sci. 2016;389:1148–55.CrossRefGoogle Scholar
  23. 23.
    Li G, Fan H, Ren F, et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. J Mat Chem A. 2016;4(48):18832–18840.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Precision Instrument and MachineryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations