Advertisement

Multifunctional Three-Dimensional Porous Metal Micro/Nanocages by Ethanol-Assisted Femtosecond Laser Irradiation

  • Guoqiang Li
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Metallic micro/nanostructures with controllable 2D-3D geometries have been attracting great attention due to their many promising applications ranging from plasmonics (Pile in Nat Photonics 7:3, 2013, [1], O’Brien et al. in Nat Commun 5:4042, 2014, [2]), electronics, (Piglosiewicz et al. in Nat Photonics 8:37–42, 2014, [3]) and bioscience (Shoji et al. in J Am Chem Soc 135:6643–6648, 2013, [4]) to chemistry (Linic et al. in Nat Mater 10, 2011, [5], Valsecchi and Brolo in Langmuir 29:5638–5649, 2013, [6]).

References

  1. 1.
    Pile D. Photocatalysis: plasmonic enhancement. Nat Photonics. 2013;7(1):3.Google Scholar
  2. 2.
    O’Brien K, Lanzillotti-Kimura ND, Rho J, et al. Ultrafast acousto-plasmonic control and sensing in complex nanostructures. Nat Commun. 2014;5:4042.Google Scholar
  3. 3.
    Piglosiewicz B, Schmidt S, Park DJ, et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat Photonics. 2014;8(1):37–42.CrossRefGoogle Scholar
  4. 4.
    Shoji T, Saitoh J, Kitamura N, et al. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light. J Am Chem Soc. 2013;135(17):6643–8.CrossRefGoogle Scholar
  5. 5.
    Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. 2011;10(12).CrossRefGoogle Scholar
  6. 6.
    Valsecchi C, Brolo AG. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir. 2013;29(19):5638–49.CrossRefGoogle Scholar
  7. 7.
    Near R, Tabor C, Duan J, et al. Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett. 2012;12(4):2158–64.CrossRefGoogle Scholar
  8. 8.
    Lin YY, Liao JD, Ju YH, et al. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnol. 2011;22(18):185308.CrossRefGoogle Scholar
  9. 9.
    Pilet N, Raabe J, Stevenson SE, et al. Nanostructure characterization by a combined x-ray absorption/scanning force microscopy system. Nanotechnol. 2012;23(47):475708.CrossRefGoogle Scholar
  10. 10.
    Ye X, Qi L. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: controllable fabrication, assembly, and applications. Nano Today. 2011;6(6):608–31.CrossRefGoogle Scholar
  11. 11.
    Chang CH, Tian L, Hesse WR, et al. From two-dimensional colloidal self-assembly to three-dimensional nanolithography. Nano Lett. 2011;11(6):2533–7.CrossRefGoogle Scholar
  12. 12.
    Tsujioka T. Metal-vapor deposition modulation on polymer surfaces prepared by the coffee-ring effect. Soft Matter. 2013;9(24):5681–5.CrossRefGoogle Scholar
  13. 13.
    Gecys P, Markauskas E, Gedvilas M, et al. Ultrashort pulsed laser induced material lift-off processing of CZTSe thin-film solar cells. Sol Energy. 2014;102:82–90.CrossRefGoogle Scholar
  14. 14.
    Masui K, Shoji S, Asaba K, et al. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization. Opt Express. 2011;19(23):22786–96.CrossRefGoogle Scholar
  15. 15.
    Vora K, Kang SY, Shukla S, et al. Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix. Appl Phys Lett. 2012;100(6):063120.CrossRefGoogle Scholar
  16. 16.
    Okamuro K, Hashida M, Miyasaka Y, et al. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys Rev B. 2010;82(16):165417.CrossRefGoogle Scholar
  17. 17.
    Sakabe S, Hashida M, Tokita S, et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys Rev B. 2009;79(3):033409.CrossRefGoogle Scholar
  18. 18.
    Wang J, Guo C. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Appl Phys Lett. 2005;87(25):251914.CrossRefGoogle Scholar
  19. 19.
    Oliveira V, Ausset S, Vilar R. Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation. Appl Surf Sci. 2009;255(17):7556–60.CrossRefGoogle Scholar
  20. 20.
    Nayak BK, Gupta MC, Kolasinski KW. Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Appl Phys A Mater Sci Process. 2008;90(3):399–402.CrossRefGoogle Scholar
  21. 21.
    Amoruso S, Bruzzese R, Wang X, et al. Femtosecond laser ablation of nickel in vacuum. J Phys D: Appl Phys. 2007;40(2):331.CrossRefGoogle Scholar
  22. 22.
    Ali N, Bashir S, Akram M, et al. Effect of dry and wet ambient environment on the pulsed laser ablation of titanium. Appl Surf Sci. 2013;270:49–57.CrossRefGoogle Scholar
  23. 23.
    Khorsand S, Raeissi K, Ashrafizadeh F. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process. Appl Surf Sci. 2014;305:498–505.CrossRefGoogle Scholar
  24. 24.
    Yang GW. Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci. 2007;52(4):648–98.CrossRefGoogle Scholar
  25. 25.
    Shaheen ME, Gagnon JE, Fryer BJ. Femtosecond laser ablation of brass in air and liquid media. J Appl Phys. 2013;113(21):213106.CrossRefGoogle Scholar
  26. 26.
    Barmina EV, Stratakis E, Barberoglou M, et al. Laser-assisted nanostructuring of Tungsten in liquid environment. Appl Surf Sci. 2012;258(15):5898–902.CrossRefGoogle Scholar
  27. 27.
    Lungu CP, Ticoş CM, Poroşnicu C, et al. Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation. Appl Phys Lett. 2014;104(10):101604.CrossRefGoogle Scholar
  28. 28.
    Le Harzic R, Dörr D, Sauer D, et al. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt Lett. 2011;36(2):229–31.CrossRefGoogle Scholar
  29. 29.
    Vorobyev AY, Makin VS, Guo C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources. Phys Rev Lett. 2009;102(23):234301.CrossRefGoogle Scholar
  30. 30.
    Søndergaard T, Novikov SM, Holmgaard T, et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat Commun. 2012;3:969.CrossRefGoogle Scholar
  31. 31.
    Vorobyev AY, Topkov AN, Gurin OV, et al. Enhanced absorption of metals over ultrabroad electromagnetic spectrum. Appl Phys Lett. 2009;95(12):121106.CrossRefGoogle Scholar
  32. 32.
    Amoruso S, Ausanio G, Barone AC, et al. Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum. Appl Surf Sci. 2007;254(4):1012–6.CrossRefGoogle Scholar
  33. 33.
    Boinovich LB, Emelyanenko AM, Pashinin AS, et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings. Langmuir. 2011;28(2):1206–16.CrossRefGoogle Scholar
  34. 34.
    Yong J, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion. J Phys Chem C. 2013;117(47):24907–12.CrossRefGoogle Scholar
  35. 35.
    Yong J, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Appl Surf Sci. 2014;288:579–83.CrossRefGoogle Scholar
  36. 36.
    Yong J, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A. 2014;2(15):5499–507.CrossRefGoogle Scholar
  37. 37.
    Yong J, Yang Q, Chen F, et al. Bioinspired superhydrophobic surfaces with directional Adhesion. RSC Adv. 2014;4(16):8138–43.CrossRefGoogle Scholar
  38. 38.
    Li G, Li J, Zhang C, et al. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity[J]. ACS applied materials and interfaces. 2014;7(1):383–390.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Precision Instrument and MachineryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations