Skip to main content

Key Technical Problems of Femtosecond Laser Bionic Surfaces

  • Chapter
  • First Online:
  • 555 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Researchers of micro/nano engineering laboratory of University of Science and Technology of China have established the femtosecond laser micro/nanofabrication system since 2001, as shown in Fig. 2.1. This micro/nanofabrication system is composed of femtosecond laser system, precision processing system, and control system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li G, Li J, Yang L, et al. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci. 2013;276:203–9.

    Article  CAS  Google Scholar 

  2. Qi L, Nishii K, Namba Y. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel. Opt Lett. 2009;34(12):1846–8.

    Article  Google Scholar 

  3. Yao J, Zhang C, Liu H, et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci. 2012;258(19):7625–32.

    Article  CAS  Google Scholar 

  4. Yang HD, Li XH, Li GQ, et al. Formation of colorized silicon by femtosecond laser pulses in different background gases. Appl Phys A Mater Sci Process. 2011;104(2):749–53.

    Article  CAS  Google Scholar 

  5. Amoruso S, Bruzzese R, Wang X, et al. Femtosecond laser ablation of nickel in vacuum. J Phys D Appl Phys. 2007;40(2):331.

    Article  CAS  Google Scholar 

  6. Ali N, Bashir S, Akram M, et al. Effect of dry and wet ambient environment on the pulsed laser ablation of titanium. Appl Surf Sci. 2013;270:49–57.

    Article  CAS  Google Scholar 

  7. Bian H, Yang Q, Liu H, et al. A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation. Mater Sci Eng, C. 2013;33(2):663–7.

    Article  CAS  Google Scholar 

  8. Barmina EV, Stratakis E, Fotakis K, et al. Generation of nanostructures on metals by laser ablation in liquids: new results. Quantum Electron. 2010;40(11):1012.

    Article  CAS  Google Scholar 

  9. Kumar B, Yadav D, Thareja RK. Growth dynamics of nanoparticles in laser produced plasma in liquid ambient. J Appl Phys. 2011;110(7):074903.

    Article  CAS  Google Scholar 

  10. Amoruso S, Ausanio G, Barone AC, et al. Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum. Appl Surf Sci. 2007;254(4):1012–6.

    Article  CAS  Google Scholar 

  11. Albu C, Dinescu A, Filipescu M, et al. Periodical structures induced by femtosecond laser on metals in air and liquid environments. Appl Surf Sci. 2013;278:347–51.

    Article  CAS  Google Scholar 

  12. Bonse J, Rosenfeld A, Krüger J. Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities. In: LAT 2010: International conference on lasers, applications, and technologies. International society for optics and photonics; 2011, 7994, 79940M.

    Google Scholar 

  13. Le Harzic R, Dörr D, Sauer D, et al. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl Phys Lett. 2011;98(21):211905.

    Article  CAS  Google Scholar 

  14. Varlamova O, Bounhalli M, Reif J. Influence of irradiation dose on laser-induced surface nanostructures on silicon. Appl Surf Sci. 2013;278:62–6.

    Article  CAS  Google Scholar 

  15. Obona JV, Ocelík V, Skolski JZP, et al. On the surface topography of ultrashort laser pulse treated steel surfaces. Appl Surf Sci. 2011;258(4):1555–60.

    Article  CAS  Google Scholar 

  16. Straub M, Afshar M, Feili D, et al. Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon. J Appl Phys. 2012;111(12):124315.

    Article  CAS  Google Scholar 

  17. Okamuro K, Hashida M, Miyasaka Y, et al. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys Rev B. 2010;82(16):165417.

    Article  CAS  Google Scholar 

  18. Sakabe S, Hashida M, Tokita S, et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys Rev B. 2009;79(3):033409.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, G. (2018). Key Technical Problems of Femtosecond Laser Bionic Surfaces. In: Bionic Functional Structures by Femtosecond Laser Micro/nanofabrication Technologies. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-0359-3_2

Download citation

Publish with us

Policies and ethics