Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Experienced the long period of stringent evolution, the living organisms develop their unique structures and materials through natural selection, and thus adapt to the nature. Inspired by the living organisms, a new, interdisciplinary, and cutting-edge bionics which permeates and combines not just biology, computer science, but also nanotechnology, materials science, chemistry, physics has grown considerably in recent years [1, 2, 3]. Bionics refers to the application of biological methods, structures, functions, and systems found in nature to the study and design of engineering systems and modern technology for the purpose of solving complex problems which have troubled human beings for decades [1, 2, 3]. A crystallization of mankind’s intelligence, bionics is a significant symbol of scientific and technological progress, which may find a wide range of applications in communications, mechanical engineering, biomedicine, artificial intelligence and so on.

References

  1. 1.
    Dickinson MH. Bionics: Biological insight into mechanical design. Proc Natl Acad Sci. 1999;96(25):14208–9.Google Scholar
  2. 2.
    Johnson EAC, Bonser RHC, Jeronimidis G. Recent advances in biomimetic sensing technologies. Philosophical transactions of the royal society of London A: Mathematical, physical and engineering sciences. 1893;2009(367):1559–69.Google Scholar
  3. 3.
    Kirchner A, Schadschneider A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A. 2002;312(1):260–76.Google Scholar
  4. 4.
    Bjorklund B. Qualitative analysis of gel precipitates with the aid of chemical color reactions. Proc Soc Exp Biol Med. 1954;85(3):438–41.Google Scholar
  5. 5.
    Barton G M. Chemical color tests for Canadian woods. Can For Ind. 1973.Google Scholar
  6. 6.
    Takeoka Y, Watanabe M. Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir. 2003;19(22):9104–6.Google Scholar
  7. 7.
    Zhao Y, Xie Z, Gu H, et al. Bio-inspired variable structural color materials. Chem Soc Rev. 2012;41(8):3297–317.Google Scholar
  8. 8.
    Lee RT, Smith GS. Detailed electromagnetic simulation for the structural color of butterfly wings. Appl Opt. 2009;48(21):4177–90.Google Scholar
  9. 9.
    Kinoshita S, Yoshioka S. Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem. 2005;6(8):1442–59.Google Scholar
  10. 10.
    Greenewalt CH, Brandt W, Friel DD. Iridescent colors of hummingbird feathers. JOSA. 1960;50(10):1005–13.Google Scholar
  11. 11.
    Cong H, Cao W. Thin film interference of colloidal thin films. Langmuir. 2004;20(19):8049–53.Google Scholar
  12. 12.
    Gralak B, Tayeb G, Enoch S. Morpho butterflies wings color modeled with lamellar grating theory. Opt Express. 2001;9(11):567–78.Google Scholar
  13. 13.
    Knop K. Color pictures using the zero diffraction order of phase grating structures. Opt Commun. 1976;18(3):298–303.Google Scholar
  14. 14.
    Lochbihler H. Colored images generated by metallic sub-wavelength gratings. Opt Express. 2009;17(14):12189–96.Google Scholar
  15. 15.
    Pursiainen OLJ, Baumberg JJ, Winkler H, et al. Nanoparticle-tuned structural color from polymer opals. Opt Express. 2007;15(15):9553–61.Google Scholar
  16. 16.
    Arsenault AC, Puzzo DP, Manners I, et al. Photonic-crystal full-color displays. Nat Photonics. 2007;1(8):468–72.Google Scholar
  17. 17.
    Reeves WH, Skryabin DV, Biancalana F, et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature. 2003;424(6948):511–5.Google Scholar
  18. 18.
    Parker AR, Townley HE. Biomimetics of photonic nanostructures. Nanosc Technol: A Collect Rev Nat J. 2010:230–6.Google Scholar
  19. 19.
    Shevtsova E, Hansson C, Janzen DH, et al. Stable structural color patterns displayed on transparent insect wings. Proc Natl Acad Sci. 2011;108(2):668–73.Google Scholar
  20. 20.
    Zi J, Yu X, Li Y, et al. Coloration strategies in peacock feathers. Proc Natl Acad Sci. 2003;100(22):12576–8.Google Scholar
  21. 21.
    Chung K, Yu S, Heo CJ, et al. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv Mater. 2012;24(18):2375–9.Google Scholar
  22. 22.
    Kim H, Ge J, Kim J, et al. Structural color printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics. 2009;3(9):534–40.Google Scholar
  23. 23.
    Vorobyev AY, Guo C. Colorizing metals with femtosecond laser pulses. Appl Phys Lett. 2008;92(4):041914.Google Scholar
  24. 24.
    Vorobyev AY, Makin VS, Guo C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources. Phys Rev Lett. 2009;102(23):234301.Google Scholar
  25. 25.
    Vorobyev AY, Guo C. Femtosecond laser blackening of platinum. J Appl Phys. 2008;104(5):053516.Google Scholar
  26. 26.
    Vorobyev AY, Guo C. Direct creation of black silicon using femtosecond laser pulses. Appl Surf Sci. 2011;257(16):7291–4.Google Scholar
  27. 27.
    Vorobyev AY, Guo C. Reflection of femtosecond laser light in multipulse ablation of metals. J Appl Phys. 2011;110(4):043102.Google Scholar
  28. 28.
    Wu Q, Ma Y, Fang R, et al. Femtosecond laser-induced periodic surface structure on diamond film. Appl Phys Lett. 2003;82(11):1703–5.Google Scholar
  29. 29.
    Borowiec A, Haugen HK. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl Phys Lett. 2003;82(25):4462–4.Google Scholar
  30. 30.
    Vorobyev AY, Makin VS, Guo C. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J Appl Phys. 2007;101(3):034903.Google Scholar
  31. 31.
    Wagner R, Gottmann J, Horn A, et al. Subwavelength ripple formation induced by tightly focused femtosecond laser radiation. Appl Surf Sci. 2006;252(24):8576–9.Google Scholar
  32. 32.
    Varlamova O, Costache F, Reif J, et al. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light. Appl Surf Sci. 2006;252(13):4702–6.Google Scholar
  33. 33.
    Sano T, Yanai M, Ohmura E, et al. Femtosecond laser fabrication of microspike-arrays on tungsten surface. Appl Surf Sci. 2005;247(1):340–6.Google Scholar
  34. 34.
    Tsutsumi N, Fujihara A. Pulsed laser induced spontaneous gratings on a surface of azobenzene polymer. Appl Phys Lett. 2004;85(20):4582–4.Google Scholar
  35. 35.
    Qi L, Nishii K, Namba Y. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel. Opt Lett. 2009;34(12):1846–8.Google Scholar
  36. 36.
    Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express. 2010;18(3):2913–24.Google Scholar
  37. 37.
    Yao J, Zhang C, Liu H, et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci. 2012;258(19):7625–32.Google Scholar
  38. 38.
    Canning J. Fibre gratings and devices for sensors and lasers. Laser Photonics Rev. 2008;2(4):275–89.Google Scholar
  39. 39.
    Li L, Hong M, Schmidt M, et al. Laser nano-manufacturing-state of the art and challenges. CIRP Ann Manuf Technol. 2011;60(2):735–55.Google Scholar
  40. 40.
    Ahsan MS, Ahmed F, Kim YG, et al. Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl Surf Sci. 2011;257(17):7771–7.Google Scholar
  41. 41.
    Zhakhovskii VV, Inogamov NA, Nishihara K. New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Lett. 2008;87(8):423–7.Google Scholar
  42. 42.
    Ionin AA, Kudryashov SI, Makarov SV, et al. Femtosecond laser color marking of metal and semiconductor surfaces. Appl Phys A. 2012;107(2):301–5.Google Scholar
  43. 43.
    Wang X, Zhang D, Zhang H, et al. Tuning color by pore depth of metal-coated porous alumina. Nanotechnology. 2011;22(30):305306.Google Scholar
  44. 44.
    Lehmuskero A, Kontturi V, Hiltunen J, et al. Modeling of laser-colored stainless steel surfaces by color pixels. Appl Phys B: Lasers Opt. 2010;98(2):497–500.Google Scholar
  45. 45.
    Tang G, Hourd AC, Abdolvand A. Nanosecond pulsed laser blackening of copper. Appl Phys Lett. 2012;101(23):231902.Google Scholar
  46. 46.
    Li G, Li J, Yang L, et al. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci. 2013;276:203–9.Google Scholar
  47. 47.
    Antończak AJ, Kocoń D, Nowak M, et al. Laser-induced colour marking-sensitivity scaling for a stainless steel. Appl Surf Sci. 2013;264:229–36.Google Scholar
  48. 48.
    Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–51.Google Scholar
  49. 49.
    Öner D, McCarthy TJ. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir. 2000;16(20):7777–82.Google Scholar
  50. 50.
    Sun T, Feng L, Gao X, et al. Bioinspired surfaces with special wettability. Acc Chem Res. 2005;38(8):644–52.Google Scholar
  51. 51.
    Fowkes, Frederick M, ed. Contact angle, wettability, and adhesion. Am Chem Soc. 1964.Google Scholar
  52. 52.
    Wenzel RN. Surface roughness and contact angle. J Phys Chem. 1949;53(9):1466–7.Google Scholar
  53. 53.
    Joanny JF, De Gennes PG. A model for contact angle hysteresis. Simple views on condensed matter. 2003:457–67.Google Scholar
  54. 54.
    De Gennes PG. Wetting: statics and dynamics. Rev Mod Phys. 1985;57(3):827.Google Scholar
  55. 55.
    Johnson RE Jr, Dettre RH. Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem. 1964;68(7):1744–50.Google Scholar
  56. 56.
    Good RJ, Girifalco LA. A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. J Phys Chem. 1960;64(5):561–5.Google Scholar
  57. 57.
    Dettre RH, Johnson RE Jr. Contact Angle Hysteresis. IV. Contact angle measurements on heterogeneous surfaces. J Phys Chem. 1965;69(5):1507–15.Google Scholar
  58. 58.
    Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100(2):335–54.Google Scholar
  59. 59.
    Tyson WR, Miller WA. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf Sci. 1977;62(1):267–76.Google Scholar
  60. 60.
    Tolman RC. The effect of droplet size on surface tension. J Chem Phys. 1949;17(3):333–7.Google Scholar
  61. 61.
    Rotenberg Y, Boruvka L, Neumann AW. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci. 1983;93(1):169–83.Google Scholar
  62. 62.
    Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys. 1949;17(3):338–43.Google Scholar
  63. 63.
    Van Oss CJ, Good RJ, Chaudhury MK. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir. 1988;4(4):884–91.Google Scholar
  64. 64.
    Jasper JJ. The surface tension of pure liquid compounds. J Phys Chem Ref Data. 1972;1(4):841–1010.Google Scholar
  65. 65.
    Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–94.Google Scholar
  66. 66.
    Zhu X, Zhu L, Chen H, et al. Micro-ball lens structure fabrication based on drop on demand printing the liquid mold. Appl Surf Sci. 2016;361:80–9.Google Scholar
  67. 67.
    Good RJ. A thermodynamic derivation of wenzel’s modification of young’s equation for contact angles; together with a theory of hysteresis. J Am Chem Soc. 1952;74(20):5041–2.Google Scholar
  68. 68.
    Pierce E, Carmona FJ, Amirfazli A. Understanding of sliding and contact angle results in tilted plate experiments. Colloids Surf, A. 2008;323(1):73–82.Google Scholar
  69. 69.
    Nakajima A, Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films. 2000;376(1):140–3.Google Scholar
  70. 70.
    Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir. 2002;18(15):5818–22.Google Scholar
  71. 71.
    Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir. 2000;16(13):5754–60.Google Scholar
  72. 72.
    Kawasaki K. Study of wettability of polymers by sliding of water drop. J Colloid Sci. 1960;15(5):402–7.Google Scholar
  73. 73.
    Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21(3):956–61.Google Scholar
  74. 74.
    Xie Q, Xu J, Feng L, et al. Facile Creation of a super-amphiphobic coating surface with bionic microstructure. Adv Mater. 2004;16(4):302–5.Google Scholar
  75. 75.
    Wang S, Feng L, Jiang L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv Mater. 2006;18(6):767–70.Google Scholar
  76. 76.
    Artus GRJ, Jung S, Zimmermann J, et al. Silicone nanofilaments and their application as superhydrophobic coatings. Adv Mater. 2006;18(20):2758–62.Google Scholar
  77. 77.
    Choi SJ, Suh KY, Lee HH. A geometry controllable approach for the fabrication of biomimetic hierarchical structure and its superhydrophobicity with near-zero sliding angle. Nanotechnology. 2008;19(27):275305.Google Scholar
  78. 78.
    Guo Z, Zhou F, Hao J, et al. Stable biomimetic super-hydrophobic engineering materials. J Am Chem Soc. 2005;127(45):15670–1.Google Scholar
  79. 79.
    Kiuru M, Alakoski E. Low sliding angles in hydrophobic and oleophobic coatings prepared with plasma discharge method. Mater Lett. 2004;58(16):2213–6.Google Scholar
  80. 80.
    Acatay K, Simsek E, Ow-Yang C, et al. Tunable, superhydrophobically stable polymeric surfaces by electrospinning. Angew Chem Int Ed. 2004;43(39):5210–3.Google Scholar
  81. 81.
    White AM, Truesdale MC, Bae JG, et al. Differential effects of ethanol on motor coordination in adolescent and adult rats. Pharmacol Biochem Behav. 2002;73(3):673–7.Google Scholar
  82. 82.
    Langmuir I. The mechanism of the surface phenomena of flotation. Trans Faraday Soc. 1920;15(June):62–74.Google Scholar
  83. 83.
    Suzuki S, Nakajima A, Kameshima Y, et al. Elongation and contraction of water droplet during sliding on the silicon surface treated by fluoroalkylsilane. Surf Sci. 2004;557(1):L163–8.Google Scholar
  84. 84.
    Kamitani K, Teranishi T. Development of water-repellent glass improved water-sliding property and durability. J Sol-Gel Sci Technol. 2003;26(1):823–5.Google Scholar
  85. 85.
    Sakai M, Song JH, Yoshida N, et al. Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir. 2006;22(11):4906–9.Google Scholar
  86. 86.
    Erbil HY, Demirel AL, Avcı Y, et al. Transformation of a simple plastic into a superhydrophobic surface. Science. 2003;299(5611):1377–80.Google Scholar
  87. 87.
    Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem. 2004;116(33):4438–41.Google Scholar
  88. 88.
    Roach P, Shirtcliffe NJ, Newton MI. Progess in superhydrophobic surface development. Soft Matter. 2008;4(2):224–40.Google Scholar
  89. 89.
    Li XM, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev. 2007;36(8):1350–68.Google Scholar
  90. 90.
    Feng L, Song Y, Zhai J, et al. Creation of a superhydrophobic surface from an amphiphilic polymer. Angew Chem. 2003;115(7):824–6.Google Scholar
  91. 91.
    Choi CH, Kim CJ. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett. 2006;96(6):066001.Google Scholar
  92. 92.
    Huang L, Lau SP, Yang HY, et al. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J Phys Chem B. 2005;109(16):7746–8.Google Scholar
  93. 93.
    Hong X, Gao X, Jiang L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J Am Chem Soc. 2007;129(6):1478–9.Google Scholar
  94. 94.
    Han JT, Lee DH, Ryu CY, et al. Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding. J Am Chem Soc. 2004;126(15):4796–7.Google Scholar
  95. 95.
    Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202(1):1–8.Google Scholar
  96. 96.
    Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot. 1997;79(6):667–77.Google Scholar
  97. 97.
    Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21(3):956–61.Google Scholar
  98. 98.
    Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica. 1996;77(3):213–25.Google Scholar
  99. 99.
    Wagner P, Fürstner R, Barthlott W, et al. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J Exp Bot. 2003;54(385):1295–303.Google Scholar
  100. 100.
    Neinhuis C, Barthlott W. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol. 1998;138(1):91–8.Google Scholar
  101. 101.
    Zheng Y, Han D, Zhai J, et al. In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro-and nanostructure from water condensation. Appl Phys Lett. 2008;92(8):084106.Google Scholar
  102. 102.
    Zhang J, Sheng X, Jiang L. The dewetting properties of lotus leaves. Langmuir. 2008;25(3):1371–6.Google Scholar
  103. 103.
    Cheng Q, Li M, Zheng Y, et al. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter. 2011;7(13):5948–51.Google Scholar
  104. 104.
    Liu K, Zhang M, Zhai J, et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Appl Phys Lett. 2008;92(18):183103.Google Scholar
  105. 105.
    Sun T, Feng L, Gao X, et al. Bioinspired surfaces with special wettability. Acc Chem Res. 2005;38(8):644–52.Google Scholar
  106. 106.
    Feng XQ, Gao X, Wu Z, et al. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir. 2007;23(9):4892–6.Google Scholar
  107. 107.
    Jiang L, Yao X, Li H, et al. “Water strider” legs with a self-assembled coating of single-crystalline nanowires of an organic semiconductor. Adv Mater. 2010;22(3):376–9.Google Scholar
  108. 108.
    Ding Y, Xu S, Zhang Y, et al. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry. Nanotechnology. 2008;19(35):355708.Google Scholar
  109. 109.
    Shi F, Niu J, Liu J, et al. Towards understanding why a superhydrophobic coating is needed by water striders. Adv Mater. 2007;19(17):2257–61.Google Scholar
  110. 110.
    Shi F, Wang Z, Zhang X. Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders. Adv Mater. 2005;17(8):1005–9.Google Scholar
  111. 111.
    Wei PJ, Chen SC, Lin JF. Adhesion forces and contact angles of water strider legs. Langmuir. 2008;25(3):1526–8.Google Scholar
  112. 112.
    Ji XY, Wang JW, Feng XQ. Role of flexibility in the water repellency of water strider legs: theory and experiment. Phys Rev E. 2012;85(2):021607.Google Scholar
  113. 113.
    Watson GS, Cribb BW, Watson JA. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider. Acta Biomater. 2010;6(10):4060–4.Google Scholar
  114. 114.
    Zheng QS, Yu Y, Feng XQ. The role of adaptive-deformation of water strider leg in its walking on water. J Adhes Sci Technol. 2009;23(3):493–501.Google Scholar
  115. 115.
    Pan Q, Liu J, Zhu Q. A water strider-like model with large and stable loading capacity fabricated from superhydrophobic copper foils. ACS Appl Mater Interfaces. 2010;2(7):2026–30.Google Scholar
  116. 116.
    Li Y, Cai W, Duan G, et al. Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method. J Colloid Interface Sci. 2005;287(2):634–9.Google Scholar
  117. 117.
    Zhu Y, Hu D, Wan MX, et al. Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline. Adv Mater. 2007;19(16):2092–6.Google Scholar
  118. 118.
    Wan M. A template-free method towards conducting polymer nanostructures. Adv Mater. 2008;20(15):2926–32.Google Scholar
  119. 119.
    Bormashenko E, Stein T, Whyman G, et al. Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir. 2006;22(24):9982–5.Google Scholar
  120. 120.
    Feng XJ, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater. 2006;18(23):3063–78.Google Scholar
  121. 121.
    Li Y, Jia WZ, Song YY, et al. Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chem Mater. 2007;19(23):5758–64.Google Scholar
  122. 122.
    Sun M, Luo C, Xu L, et al. Artificial lotus leaf by nanocasting. Langmuir. 2005;21(19):8978–81.Google Scholar
  123. 123.
    Lee Y, Park SH, Kim KB, et al. Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces. Adv Mater. 2007;19(17):2330–5.Google Scholar
  124. 124.
    Chen H, Wang N, Di J, et al. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir. 2010;26(13):11291–6.Google Scholar
  125. 125.
    Zhao N, Shi F, Wang Z, et al. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir. 2005;21(10):4713–6.Google Scholar
  126. 126.
    Tang Z, Wang Y, Podsiadlo P, et al. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater. 2006;18(24):3203–24.Google Scholar
  127. 127.
    Kotov NA. Layer-by-layer self-assembly: the contribution of hydrophobic interactions. Nanostruct Mater. 1999;12(5):789–96.Google Scholar
  128. 128.
    Zhao Y, Li M, Lu Q, et al. Superhydrophobic polyimide films with a hierarchical topography: combined replica molding and layer-by-layer assembly. Langmuir. 2008;24(21):12651–7.Google Scholar
  129. 129.
    Serizawa T, Kamimura S, Kawanishi N, et al. Layer-by-layer assembly of poly (vinyl alcohol) and hydrophobic polymers based on their physical adsorption on surfaces. Langmuir. 2002;18(22):8381–5.Google Scholar
  130. 130.
    Amigoni S, Taffin de Givenchy E, Dufay M, et al. Covalent layer-by-layer assembled superhydrophobic organic-inorganic hybrid films. Langmuir. 2009;25(18):11073–7.Google Scholar
  131. 131.
    Khorasani MT, Mirzadeh H. In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. J Appl Polym Sci. 2004;91(3):2042–7.Google Scholar
  132. 132.
    Long J, Fan P, Zhong M, et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci. 2014;311:461–7.Google Scholar
  133. 133.
    Yong J, Chen F, Yang Q, et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays. Langmuir. 2013;29(10):3274–9.Google Scholar
  134. 134.
    Yong J, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion. J Phys Chem C. 2013;117(47):24907–12.Google Scholar
  135. 135.
    Yong J, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Appl Surf Sci. 2014;288:579–83.Google Scholar
  136. 136.
    Yong J, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A. 2014;2(15):5499–507.Google Scholar
  137. 137.
    Yong J, Yang Q, Chen F, et al. Bioinspired superhydrophobic surfaces with directional adhesion. RSC Adv. 2014;4(16):8138–43.Google Scholar
  138. 138.
    Balu B, Breedveld V, Hess DW. Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir. 2008;24(9):4785–90.Google Scholar
  139. 139.
    Balu B, Kim JS, Breedveld V, et al. Tunability of the adhesion of water drops on a superhydrophobic paper surface via selective plasma etching. J Adhes Sci Technol. 2009;23(2):361–80.Google Scholar
  140. 140.
    Liu M, Wang S, Wei Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater. 2009;21(6):665–9.Google Scholar
  141. 141.
    Liu K, Tian Y, Jiang L. Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci. 2013;58(4):503–64.Google Scholar
  142. 142.
    Xue Z, Jiang L. Bioinspired underwater superoleophobic surfaces. Acta Polym Sin. 2012;10:1091–101.Google Scholar
  143. 143.
    Liu X, Gao J, Xue Z, et al. Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force. ACS Nano. 2012;6(6):5614–20.Google Scholar
  144. 144.
    Cheng Q, Li M, Zheng Y, et al. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter. 2011;7(13):5948–51.Google Scholar
  145. 145.
    Yao X, Song Y, Jiang L. Applications of bioinspired special wettable surfaces. Adv Mater. 2011;23(6):719–34.Google Scholar
  146. 146.
    Sawai Y, Nishimoto S, Kameshima Y, et al. Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir. 2013;29(23):6784–9.Google Scholar
  147. 147.
    Tian Y, Jiang L. Design of bioinspired, smart, multiscale interfacial materials with superwettability. MRS Bull. 2015;40(2):155–65.Google Scholar
  148. 148.
    Lin L, Liu M, Chen L, et al. Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Adv Mater. 2010;22(43):4826–30.Google Scholar
  149. 149.
    Cao Y, Zhang X, Tao L, et al. Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces. 2013;5(10):4438–42.Google Scholar
  150. 150.
    Zhou X, Zhang Z, Xu X, et al. Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces. 2013;5(15):7208–14.Google Scholar
  151. 151.
    Song J, Liu H, Wan M, et al. Bio-inspired isotropic and anisotropic wettability on a Janus free-standing polypyrrole film fabricated by interfacial electro-polymerization. J Mater Chem A. 2013;1(5):1740–4.Google Scholar
  152. 152.
    Huang Y, Liu M, Wang J, et al. Controllable underwater oil-adhesion-interface films assembled from nonspherical particles. Adv Func Mater. 2011;21(23):4436–41.Google Scholar
  153. 153.
    Cheng Q, Li M, Yang F, et al. An underwater pH-responsive superoleophobic surface with reversibly switchable oil-adhesion. Soft Matter. 2012;8(25):6740–3.Google Scholar
  154. 154.
    Taleb S, Darmanin T, Guittard F. Elaboration of voltage and ion exchange stimuli-responsive conducting polymers with selective switchable liquid-repellency. ACS Appl Mater Interfaces. 2014;6(10):7953–60.Google Scholar
  155. 155.
    Ding C, Zhu Y, Liu M, et al. PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil droplet transport. Soft Matter. 2012;8(35):9064–8.Google Scholar
  156. 156.
    Wu D, Wu S, Chen QD, et al. Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels. Lab Chip. 2011;11(22):3873–9.Google Scholar
  157. 157.
    Jiang T, Guo Z, Liu W. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J Mater Chem A. 2015;3(5):1811–27.Google Scholar
  158. 158.
    Jin H, Kettunen M, Laiho A, et al. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir. 2011;27(5):1930–4.Google Scholar
  159. 159.
    Liu K, Jiang L. Bio-inspired self-cleaning surfaces. Annu Rev Mater Res. 2012;42:231–63.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Precision Instrument and MachineryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations