• Guoqiang Li
Part of the Springer Theses book series (Springer Theses)


Experienced the long period of stringent evolution, the living organisms develop their unique structures and materials through natural selection, and thus adapt to the nature. Inspired by the living organisms, a new, interdisciplinary, and cutting-edge bionics which permeates and combines not just biology, computer science, but also nanotechnology, materials science, chemistry, physics has grown considerably in recent years [1, 2, 3]. Bionics refers to the application of biological methods, structures, functions, and systems found in nature to the study and design of engineering systems and modern technology for the purpose of solving complex problems which have troubled human beings for decades [1, 2, 3]. A crystallization of mankind’s intelligence, bionics is a significant symbol of scientific and technological progress, which may find a wide range of applications in communications, mechanical engineering, biomedicine, artificial intelligence and so on.


  1. 1.
    Dickinson MH. Bionics: Biological insight into mechanical design. Proc Natl Acad Sci. 1999;96(25):14208–9.CrossRefGoogle Scholar
  2. 2.
    Johnson EAC, Bonser RHC, Jeronimidis G. Recent advances in biomimetic sensing technologies. Philosophical transactions of the royal society of London A: Mathematical, physical and engineering sciences. 1893;2009(367):1559–69.Google Scholar
  3. 3.
    Kirchner A, Schadschneider A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A. 2002;312(1):260–76.CrossRefGoogle Scholar
  4. 4.
    Bjorklund B. Qualitative analysis of gel precipitates with the aid of chemical color reactions. Proc Soc Exp Biol Med. 1954;85(3):438–41.CrossRefGoogle Scholar
  5. 5.
    Barton G M. Chemical color tests for Canadian woods. Can For Ind. 1973.Google Scholar
  6. 6.
    Takeoka Y, Watanabe M. Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir. 2003;19(22):9104–6.CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Xie Z, Gu H, et al. Bio-inspired variable structural color materials. Chem Soc Rev. 2012;41(8):3297–317.CrossRefGoogle Scholar
  8. 8.
    Lee RT, Smith GS. Detailed electromagnetic simulation for the structural color of butterfly wings. Appl Opt. 2009;48(21):4177–90.CrossRefGoogle Scholar
  9. 9.
    Kinoshita S, Yoshioka S. Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem. 2005;6(8):1442–59.CrossRefGoogle Scholar
  10. 10.
    Greenewalt CH, Brandt W, Friel DD. Iridescent colors of hummingbird feathers. JOSA. 1960;50(10):1005–13.CrossRefGoogle Scholar
  11. 11.
    Cong H, Cao W. Thin film interference of colloidal thin films. Langmuir. 2004;20(19):8049–53.CrossRefGoogle Scholar
  12. 12.
    Gralak B, Tayeb G, Enoch S. Morpho butterflies wings color modeled with lamellar grating theory. Opt Express. 2001;9(11):567–78.CrossRefGoogle Scholar
  13. 13.
    Knop K. Color pictures using the zero diffraction order of phase grating structures. Opt Commun. 1976;18(3):298–303.CrossRefGoogle Scholar
  14. 14.
    Lochbihler H. Colored images generated by metallic sub-wavelength gratings. Opt Express. 2009;17(14):12189–96.CrossRefGoogle Scholar
  15. 15.
    Pursiainen OLJ, Baumberg JJ, Winkler H, et al. Nanoparticle-tuned structural color from polymer opals. Opt Express. 2007;15(15):9553–61.CrossRefGoogle Scholar
  16. 16.
    Arsenault AC, Puzzo DP, Manners I, et al. Photonic-crystal full-color displays. Nat Photonics. 2007;1(8):468–72.CrossRefGoogle Scholar
  17. 17.
    Reeves WH, Skryabin DV, Biancalana F, et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature. 2003;424(6948):511–5.CrossRefGoogle Scholar
  18. 18.
    Parker AR, Townley HE. Biomimetics of photonic nanostructures. Nanosc Technol: A Collect Rev Nat J. 2010:230–6.Google Scholar
  19. 19.
    Shevtsova E, Hansson C, Janzen DH, et al. Stable structural color patterns displayed on transparent insect wings. Proc Natl Acad Sci. 2011;108(2):668–73.CrossRefGoogle Scholar
  20. 20.
    Zi J, Yu X, Li Y, et al. Coloration strategies in peacock feathers. Proc Natl Acad Sci. 2003;100(22):12576–8.CrossRefGoogle Scholar
  21. 21.
    Chung K, Yu S, Heo CJ, et al. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv Mater. 2012;24(18):2375–9.CrossRefGoogle Scholar
  22. 22.
    Kim H, Ge J, Kim J, et al. Structural color printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics. 2009;3(9):534–40.CrossRefGoogle Scholar
  23. 23.
    Vorobyev AY, Guo C. Colorizing metals with femtosecond laser pulses. Appl Phys Lett. 2008;92(4):041914.CrossRefGoogle Scholar
  24. 24.
    Vorobyev AY, Makin VS, Guo C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources. Phys Rev Lett. 2009;102(23):234301.CrossRefGoogle Scholar
  25. 25.
    Vorobyev AY, Guo C. Femtosecond laser blackening of platinum. J Appl Phys. 2008;104(5):053516.CrossRefGoogle Scholar
  26. 26.
    Vorobyev AY, Guo C. Direct creation of black silicon using femtosecond laser pulses. Appl Surf Sci. 2011;257(16):7291–4.CrossRefGoogle Scholar
  27. 27.
    Vorobyev AY, Guo C. Reflection of femtosecond laser light in multipulse ablation of metals. J Appl Phys. 2011;110(4):043102.CrossRefGoogle Scholar
  28. 28.
    Wu Q, Ma Y, Fang R, et al. Femtosecond laser-induced periodic surface structure on diamond film. Appl Phys Lett. 2003;82(11):1703–5.CrossRefGoogle Scholar
  29. 29.
    Borowiec A, Haugen HK. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl Phys Lett. 2003;82(25):4462–4.CrossRefGoogle Scholar
  30. 30.
    Vorobyev AY, Makin VS, Guo C. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J Appl Phys. 2007;101(3):034903.CrossRefGoogle Scholar
  31. 31.
    Wagner R, Gottmann J, Horn A, et al. Subwavelength ripple formation induced by tightly focused femtosecond laser radiation. Appl Surf Sci. 2006;252(24):8576–9.CrossRefGoogle Scholar
  32. 32.
    Varlamova O, Costache F, Reif J, et al. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light. Appl Surf Sci. 2006;252(13):4702–6.CrossRefGoogle Scholar
  33. 33.
    Sano T, Yanai M, Ohmura E, et al. Femtosecond laser fabrication of microspike-arrays on tungsten surface. Appl Surf Sci. 2005;247(1):340–6.CrossRefGoogle Scholar
  34. 34.
    Tsutsumi N, Fujihara A. Pulsed laser induced spontaneous gratings on a surface of azobenzene polymer. Appl Phys Lett. 2004;85(20):4582–4.CrossRefGoogle Scholar
  35. 35.
    Qi L, Nishii K, Namba Y. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel. Opt Lett. 2009;34(12):1846–8.CrossRefGoogle Scholar
  36. 36.
    Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express. 2010;18(3):2913–24.CrossRefGoogle Scholar
  37. 37.
    Yao J, Zhang C, Liu H, et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci. 2012;258(19):7625–32.CrossRefGoogle Scholar
  38. 38.
    Canning J. Fibre gratings and devices for sensors and lasers. Laser Photonics Rev. 2008;2(4):275–89.CrossRefGoogle Scholar
  39. 39.
    Li L, Hong M, Schmidt M, et al. Laser nano-manufacturing-state of the art and challenges. CIRP Ann Manuf Technol. 2011;60(2):735–55.CrossRefGoogle Scholar
  40. 40.
    Ahsan MS, Ahmed F, Kim YG, et al. Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl Surf Sci. 2011;257(17):7771–7.CrossRefGoogle Scholar
  41. 41.
    Zhakhovskii VV, Inogamov NA, Nishihara K. New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Lett. 2008;87(8):423–7.CrossRefGoogle Scholar
  42. 42.
    Ionin AA, Kudryashov SI, Makarov SV, et al. Femtosecond laser color marking of metal and semiconductor surfaces. Appl Phys A. 2012;107(2):301–5.CrossRefGoogle Scholar
  43. 43.
    Wang X, Zhang D, Zhang H, et al. Tuning color by pore depth of metal-coated porous alumina. Nanotechnology. 2011;22(30):305306.CrossRefGoogle Scholar
  44. 44.
    Lehmuskero A, Kontturi V, Hiltunen J, et al. Modeling of laser-colored stainless steel surfaces by color pixels. Appl Phys B: Lasers Opt. 2010;98(2):497–500.CrossRefGoogle Scholar
  45. 45.
    Tang G, Hourd AC, Abdolvand A. Nanosecond pulsed laser blackening of copper. Appl Phys Lett. 2012;101(23):231902.CrossRefGoogle Scholar
  46. 46.
    Li G, Li J, Yang L, et al. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci. 2013;276:203–9.CrossRefGoogle Scholar
  47. 47.
    Antończak AJ, Kocoń D, Nowak M, et al. Laser-induced colour marking-sensitivity scaling for a stainless steel. Appl Surf Sci. 2013;264:229–36.CrossRefGoogle Scholar
  48. 48.
    Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–51.CrossRefGoogle Scholar
  49. 49.
    Öner D, McCarthy TJ. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir. 2000;16(20):7777–82.CrossRefGoogle Scholar
  50. 50.
    Sun T, Feng L, Gao X, et al. Bioinspired surfaces with special wettability. Acc Chem Res. 2005;38(8):644–52.CrossRefGoogle Scholar
  51. 51.
    Fowkes, Frederick M, ed. Contact angle, wettability, and adhesion. Am Chem Soc. 1964.Google Scholar
  52. 52.
    Wenzel RN. Surface roughness and contact angle. J Phys Chem. 1949;53(9):1466–7.CrossRefGoogle Scholar
  53. 53.
    Joanny JF, De Gennes PG. A model for contact angle hysteresis. Simple views on condensed matter. 2003:457–67.Google Scholar
  54. 54.
    De Gennes PG. Wetting: statics and dynamics. Rev Mod Phys. 1985;57(3):827.CrossRefGoogle Scholar
  55. 55.
    Johnson RE Jr, Dettre RH. Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem. 1964;68(7):1744–50.CrossRefGoogle Scholar
  56. 56.
    Good RJ, Girifalco LA. A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. J Phys Chem. 1960;64(5):561–5.CrossRefGoogle Scholar
  57. 57.
    Dettre RH, Johnson RE Jr. Contact Angle Hysteresis. IV. Contact angle measurements on heterogeneous surfaces. J Phys Chem. 1965;69(5):1507–15.CrossRefGoogle Scholar
  58. 58.
    Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100(2):335–54.CrossRefGoogle Scholar
  59. 59.
    Tyson WR, Miller WA. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf Sci. 1977;62(1):267–76.CrossRefGoogle Scholar
  60. 60.
    Tolman RC. The effect of droplet size on surface tension. J Chem Phys. 1949;17(3):333–7.CrossRefGoogle Scholar
  61. 61.
    Rotenberg Y, Boruvka L, Neumann AW. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci. 1983;93(1):169–83.CrossRefGoogle Scholar
  62. 62.
    Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys. 1949;17(3):338–43.CrossRefGoogle Scholar
  63. 63.
    Van Oss CJ, Good RJ, Chaudhury MK. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir. 1988;4(4):884–91.CrossRefGoogle Scholar
  64. 64.
    Jasper JJ. The surface tension of pure liquid compounds. J Phys Chem Ref Data. 1972;1(4):841–1010.CrossRefGoogle Scholar
  65. 65.
    Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–94.CrossRefGoogle Scholar
  66. 66.
    Zhu X, Zhu L, Chen H, et al. Micro-ball lens structure fabrication based on drop on demand printing the liquid mold. Appl Surf Sci. 2016;361:80–9.CrossRefGoogle Scholar
  67. 67.
    Good RJ. A thermodynamic derivation of wenzel’s modification of young’s equation for contact angles; together with a theory of hysteresis. J Am Chem Soc. 1952;74(20):5041–2.CrossRefGoogle Scholar
  68. 68.
    Pierce E, Carmona FJ, Amirfazli A. Understanding of sliding and contact angle results in tilted plate experiments. Colloids Surf, A. 2008;323(1):73–82.CrossRefGoogle Scholar
  69. 69.
    Nakajima A, Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films. 2000;376(1):140–3.CrossRefGoogle Scholar
  70. 70.
    Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir. 2002;18(15):5818–22.CrossRefGoogle Scholar
  71. 71.
    Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir. 2000;16(13):5754–60.CrossRefGoogle Scholar
  72. 72.
    Kawasaki K. Study of wettability of polymers by sliding of water drop. J Colloid Sci. 1960;15(5):402–7.CrossRefGoogle Scholar
  73. 73.
    Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21(3):956–61.CrossRefGoogle Scholar
  74. 74.
    Xie Q, Xu J, Feng L, et al. Facile Creation of a super-amphiphobic coating surface with bionic microstructure. Adv Mater. 2004;16(4):302–5.CrossRefGoogle Scholar
  75. 75.
    Wang S, Feng L, Jiang L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv Mater. 2006;18(6):767–70.CrossRefGoogle Scholar
  76. 76.
    Artus GRJ, Jung S, Zimmermann J, et al. Silicone nanofilaments and their application as superhydrophobic coatings. Adv Mater. 2006;18(20):2758–62.CrossRefGoogle Scholar
  77. 77.
    Choi SJ, Suh KY, Lee HH. A geometry controllable approach for the fabrication of biomimetic hierarchical structure and its superhydrophobicity with near-zero sliding angle. Nanotechnology. 2008;19(27):275305.CrossRefGoogle Scholar
  78. 78.
    Guo Z, Zhou F, Hao J, et al. Stable biomimetic super-hydrophobic engineering materials. J Am Chem Soc. 2005;127(45):15670–1.CrossRefGoogle Scholar
  79. 79.
    Kiuru M, Alakoski E. Low sliding angles in hydrophobic and oleophobic coatings prepared with plasma discharge method. Mater Lett. 2004;58(16):2213–6.CrossRefGoogle Scholar
  80. 80.
    Acatay K, Simsek E, Ow-Yang C, et al. Tunable, superhydrophobically stable polymeric surfaces by electrospinning. Angew Chem Int Ed. 2004;43(39):5210–3.CrossRefGoogle Scholar
  81. 81.
    White AM, Truesdale MC, Bae JG, et al. Differential effects of ethanol on motor coordination in adolescent and adult rats. Pharmacol Biochem Behav. 2002;73(3):673–7.CrossRefGoogle Scholar
  82. 82.
    Langmuir I. The mechanism of the surface phenomena of flotation. Trans Faraday Soc. 1920;15(June):62–74.CrossRefGoogle Scholar
  83. 83.
    Suzuki S, Nakajima A, Kameshima Y, et al. Elongation and contraction of water droplet during sliding on the silicon surface treated by fluoroalkylsilane. Surf Sci. 2004;557(1):L163–8.CrossRefGoogle Scholar
  84. 84.
    Kamitani K, Teranishi T. Development of water-repellent glass improved water-sliding property and durability. J Sol-Gel Sci Technol. 2003;26(1):823–5.CrossRefGoogle Scholar
  85. 85.
    Sakai M, Song JH, Yoshida N, et al. Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir. 2006;22(11):4906–9.CrossRefGoogle Scholar
  86. 86.
    Erbil HY, Demirel AL, Avcı Y, et al. Transformation of a simple plastic into a superhydrophobic surface. Science. 2003;299(5611):1377–80.CrossRefGoogle Scholar
  87. 87.
    Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem. 2004;116(33):4438–41.CrossRefGoogle Scholar
  88. 88.
    Roach P, Shirtcliffe NJ, Newton MI. Progess in superhydrophobic surface development. Soft Matter. 2008;4(2):224–40.CrossRefGoogle Scholar
  89. 89.
    Li XM, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev. 2007;36(8):1350–68.CrossRefGoogle Scholar
  90. 90.
    Feng L, Song Y, Zhai J, et al. Creation of a superhydrophobic surface from an amphiphilic polymer. Angew Chem. 2003;115(7):824–6.CrossRefGoogle Scholar
  91. 91.
    Choi CH, Kim CJ. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett. 2006;96(6):066001.CrossRefGoogle Scholar
  92. 92.
    Huang L, Lau SP, Yang HY, et al. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J Phys Chem B. 2005;109(16):7746–8.CrossRefGoogle Scholar
  93. 93.
    Hong X, Gao X, Jiang L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J Am Chem Soc. 2007;129(6):1478–9.CrossRefGoogle Scholar
  94. 94.
    Han JT, Lee DH, Ryu CY, et al. Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding. J Am Chem Soc. 2004;126(15):4796–7.CrossRefGoogle Scholar
  95. 95.
    Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202(1):1–8.CrossRefGoogle Scholar
  96. 96.
    Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot. 1997;79(6):667–77.CrossRefGoogle Scholar
  97. 97.
    Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21(3):956–61.CrossRefGoogle Scholar
  98. 98.
    Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica. 1996;77(3):213–25.CrossRefGoogle Scholar
  99. 99.
    Wagner P, Fürstner R, Barthlott W, et al. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J Exp Bot. 2003;54(385):1295–303.CrossRefGoogle Scholar
  100. 100.
    Neinhuis C, Barthlott W. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol. 1998;138(1):91–8.CrossRefGoogle Scholar
  101. 101.
    Zheng Y, Han D, Zhai J, et al. In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro-and nanostructure from water condensation. Appl Phys Lett. 2008;92(8):084106.CrossRefGoogle Scholar
  102. 102.
    Zhang J, Sheng X, Jiang L. The dewetting properties of lotus leaves. Langmuir. 2008;25(3):1371–6.CrossRefGoogle Scholar
  103. 103.
    Cheng Q, Li M, Zheng Y, et al. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter. 2011;7(13):5948–51.CrossRefGoogle Scholar
  104. 104.
    Liu K, Zhang M, Zhai J, et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Appl Phys Lett. 2008;92(18):183103.CrossRefGoogle Scholar
  105. 105.
    Sun T, Feng L, Gao X, et al. Bioinspired surfaces with special wettability. Acc Chem Res. 2005;38(8):644–52.CrossRefGoogle Scholar
  106. 106.
    Feng XQ, Gao X, Wu Z, et al. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir. 2007;23(9):4892–6.CrossRefGoogle Scholar
  107. 107.
    Jiang L, Yao X, Li H, et al. “Water strider” legs with a self-assembled coating of single-crystalline nanowires of an organic semiconductor. Adv Mater. 2010;22(3):376–9.CrossRefGoogle Scholar
  108. 108.
    Ding Y, Xu S, Zhang Y, et al. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry. Nanotechnology. 2008;19(35):355708.CrossRefGoogle Scholar
  109. 109.
    Shi F, Niu J, Liu J, et al. Towards understanding why a superhydrophobic coating is needed by water striders. Adv Mater. 2007;19(17):2257–61.CrossRefGoogle Scholar
  110. 110.
    Shi F, Wang Z, Zhang X. Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders. Adv Mater. 2005;17(8):1005–9.CrossRefGoogle Scholar
  111. 111.
    Wei PJ, Chen SC, Lin JF. Adhesion forces and contact angles of water strider legs. Langmuir. 2008;25(3):1526–8.CrossRefGoogle Scholar
  112. 112.
    Ji XY, Wang JW, Feng XQ. Role of flexibility in the water repellency of water strider legs: theory and experiment. Phys Rev E. 2012;85(2):021607.CrossRefGoogle Scholar
  113. 113.
    Watson GS, Cribb BW, Watson JA. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider. Acta Biomater. 2010;6(10):4060–4.CrossRefGoogle Scholar
  114. 114.
    Zheng QS, Yu Y, Feng XQ. The role of adaptive-deformation of water strider leg in its walking on water. J Adhes Sci Technol. 2009;23(3):493–501.CrossRefGoogle Scholar
  115. 115.
    Pan Q, Liu J, Zhu Q. A water strider-like model with large and stable loading capacity fabricated from superhydrophobic copper foils. ACS Appl Mater Interfaces. 2010;2(7):2026–30.CrossRefGoogle Scholar
  116. 116.
    Li Y, Cai W, Duan G, et al. Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method. J Colloid Interface Sci. 2005;287(2):634–9.CrossRefGoogle Scholar
  117. 117.
    Zhu Y, Hu D, Wan MX, et al. Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline. Adv Mater. 2007;19(16):2092–6.CrossRefGoogle Scholar
  118. 118.
    Wan M. A template-free method towards conducting polymer nanostructures. Adv Mater. 2008;20(15):2926–32.CrossRefGoogle Scholar
  119. 119.
    Bormashenko E, Stein T, Whyman G, et al. Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir. 2006;22(24):9982–5.CrossRefGoogle Scholar
  120. 120.
    Feng XJ, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater. 2006;18(23):3063–78.CrossRefGoogle Scholar
  121. 121.
    Li Y, Jia WZ, Song YY, et al. Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chem Mater. 2007;19(23):5758–64.CrossRefGoogle Scholar
  122. 122.
    Sun M, Luo C, Xu L, et al. Artificial lotus leaf by nanocasting. Langmuir. 2005;21(19):8978–81.CrossRefGoogle Scholar
  123. 123.
    Lee Y, Park SH, Kim KB, et al. Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces. Adv Mater. 2007;19(17):2330–5.CrossRefGoogle Scholar
  124. 124.
    Chen H, Wang N, Di J, et al. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir. 2010;26(13):11291–6.CrossRefGoogle Scholar
  125. 125.
    Zhao N, Shi F, Wang Z, et al. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir. 2005;21(10):4713–6.CrossRefGoogle Scholar
  126. 126.
    Tang Z, Wang Y, Podsiadlo P, et al. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater. 2006;18(24):3203–24.CrossRefGoogle Scholar
  127. 127.
    Kotov NA. Layer-by-layer self-assembly: the contribution of hydrophobic interactions. Nanostruct Mater. 1999;12(5):789–96.CrossRefGoogle Scholar
  128. 128.
    Zhao Y, Li M, Lu Q, et al. Superhydrophobic polyimide films with a hierarchical topography: combined replica molding and layer-by-layer assembly. Langmuir. 2008;24(21):12651–7.CrossRefGoogle Scholar
  129. 129.
    Serizawa T, Kamimura S, Kawanishi N, et al. Layer-by-layer assembly of poly (vinyl alcohol) and hydrophobic polymers based on their physical adsorption on surfaces. Langmuir. 2002;18(22):8381–5.CrossRefGoogle Scholar
  130. 130.
    Amigoni S, Taffin de Givenchy E, Dufay M, et al. Covalent layer-by-layer assembled superhydrophobic organic-inorganic hybrid films. Langmuir. 2009;25(18):11073–7.CrossRefGoogle Scholar
  131. 131.
    Khorasani MT, Mirzadeh H. In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. J Appl Polym Sci. 2004;91(3):2042–7.CrossRefGoogle Scholar
  132. 132.
    Long J, Fan P, Zhong M, et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci. 2014;311:461–7.CrossRefGoogle Scholar
  133. 133.
    Yong J, Chen F, Yang Q, et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays. Langmuir. 2013;29(10):3274–9.CrossRefGoogle Scholar
  134. 134.
    Yong J, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion. J Phys Chem C. 2013;117(47):24907–12.CrossRefGoogle Scholar
  135. 135.
    Yong J, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Appl Surf Sci. 2014;288:579–83.CrossRefGoogle Scholar
  136. 136.
    Yong J, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A. 2014;2(15):5499–507.CrossRefGoogle Scholar
  137. 137.
    Yong J, Yang Q, Chen F, et al. Bioinspired superhydrophobic surfaces with directional adhesion. RSC Adv. 2014;4(16):8138–43.CrossRefGoogle Scholar
  138. 138.
    Balu B, Breedveld V, Hess DW. Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir. 2008;24(9):4785–90.CrossRefGoogle Scholar
  139. 139.
    Balu B, Kim JS, Breedveld V, et al. Tunability of the adhesion of water drops on a superhydrophobic paper surface via selective plasma etching. J Adhes Sci Technol. 2009;23(2):361–80.CrossRefGoogle Scholar
  140. 140.
    Liu M, Wang S, Wei Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater. 2009;21(6):665–9.CrossRefGoogle Scholar
  141. 141.
    Liu K, Tian Y, Jiang L. Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci. 2013;58(4):503–64.CrossRefGoogle Scholar
  142. 142.
    Xue Z, Jiang L. Bioinspired underwater superoleophobic surfaces. Acta Polym Sin. 2012;10:1091–101.Google Scholar
  143. 143.
    Liu X, Gao J, Xue Z, et al. Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force. ACS Nano. 2012;6(6):5614–20.CrossRefGoogle Scholar
  144. 144.
    Cheng Q, Li M, Zheng Y, et al. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter. 2011;7(13):5948–51.CrossRefGoogle Scholar
  145. 145.
    Yao X, Song Y, Jiang L. Applications of bioinspired special wettable surfaces. Adv Mater. 2011;23(6):719–34.CrossRefGoogle Scholar
  146. 146.
    Sawai Y, Nishimoto S, Kameshima Y, et al. Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir. 2013;29(23):6784–9.CrossRefGoogle Scholar
  147. 147.
    Tian Y, Jiang L. Design of bioinspired, smart, multiscale interfacial materials with superwettability. MRS Bull. 2015;40(2):155–65.CrossRefGoogle Scholar
  148. 148.
    Lin L, Liu M, Chen L, et al. Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Adv Mater. 2010;22(43):4826–30.CrossRefGoogle Scholar
  149. 149.
    Cao Y, Zhang X, Tao L, et al. Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces. 2013;5(10):4438–42.CrossRefGoogle Scholar
  150. 150.
    Zhou X, Zhang Z, Xu X, et al. Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces. 2013;5(15):7208–14.CrossRefGoogle Scholar
  151. 151.
    Song J, Liu H, Wan M, et al. Bio-inspired isotropic and anisotropic wettability on a Janus free-standing polypyrrole film fabricated by interfacial electro-polymerization. J Mater Chem A. 2013;1(5):1740–4.CrossRefGoogle Scholar
  152. 152.
    Huang Y, Liu M, Wang J, et al. Controllable underwater oil-adhesion-interface films assembled from nonspherical particles. Adv Func Mater. 2011;21(23):4436–41.CrossRefGoogle Scholar
  153. 153.
    Cheng Q, Li M, Yang F, et al. An underwater pH-responsive superoleophobic surface with reversibly switchable oil-adhesion. Soft Matter. 2012;8(25):6740–3.CrossRefGoogle Scholar
  154. 154.
    Taleb S, Darmanin T, Guittard F. Elaboration of voltage and ion exchange stimuli-responsive conducting polymers with selective switchable liquid-repellency. ACS Appl Mater Interfaces. 2014;6(10):7953–60.CrossRefGoogle Scholar
  155. 155.
    Ding C, Zhu Y, Liu M, et al. PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil droplet transport. Soft Matter. 2012;8(35):9064–8.CrossRefGoogle Scholar
  156. 156.
    Wu D, Wu S, Chen QD, et al. Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels. Lab Chip. 2011;11(22):3873–9.CrossRefGoogle Scholar
  157. 157.
    Jiang T, Guo Z, Liu W. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J Mater Chem A. 2015;3(5):1811–27.CrossRefGoogle Scholar
  158. 158.
    Jin H, Kettunen M, Laiho A, et al. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir. 2011;27(5):1930–4.CrossRefGoogle Scholar
  159. 159.
    Liu K, Jiang L. Bio-inspired self-cleaning surfaces. Annu Rev Mater Res. 2012;42:231–63.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Precision Instrument and MachineryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations