Skip to main content

Enhancing WiFi Fingerprinting with Visual Clues

  • Chapter
  • First Online:
Wireless Indoor Localization
  • 947 Accesses

Abstract

Pioneer efforts to improve WiFi-based localization have resorted to motion-assisted or peer-assisted localization. They neither work in real time nor work without the help of peer users, which introduces extra costs and constraints, and thus degrades their practicality. To get over these limitations, an image-assisted localization system, named Argus, is introduced for mobile devices. The basic idea of Argus is to extract geometric constraints from crowdsourced photos, and to reduce fingerprint ambiguity by mapping the constraints jointly against the fingerprint space. This chapter describes techniques to offer such an image-assisted localization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Argus is a giant with 100 eyes in Greek mythology.

References

  1. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.: An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991)

    Article  Google Scholar 

  2. Azizyan, M., Constandache, I., Roy Choudhury, R.: Surroundsense: mobile phone localization via ambience fingerprinting. In: Proceedings of ACM MobiCom (2009)

    Google Scholar 

  3. Bahl, P., Padmanabhan, V.N.: Radar: An in-building RF-based user location and tracking system. In: Proceedings of IEEE INFOCOM (2000)

    Google Scholar 

  4. Burkard, R.E., Cela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1713–1809. Kluwer Academic, Boston (1998)

    Chapter  Google Scholar 

  5. Cheng, L., Wu, C.D., Zhang, Y.Z.: Indoor robot localization based on wireless sensor networks. IEEE Trans. Consum. Electron. 57(3), 1099–1104 (2011)

    Article  Google Scholar 

  6. Dong, J., Xiao, Y., Noreikis, M., Ou, Z., Ylä-Jääski, A.: iMoon: using smartphones for image-based indoor navigation. In: Proceedings of ACM SenSys, pp. 85–97 (2015)

    Google Scholar 

  7. Fang, S.H., Wang, C.H., Chiou, S.M., Lin, P.: Calibration-free approaches for robust Wi-Fi positioning against device diversity: a performance comparison. In: Proceedings of IEEE VTC (2012)

    Google Scholar 

  8. Gao, R., Tian, Y., Ye, F., Luo, G., Bian, K., Wang, Y., Wang, T., Li, X.: Sextant: towards ubiquitous indoor localization service by photo-taking of the environment. IEEE Trans. Mob. Comput. 15(2), 460–474 (2016)

    Article  Google Scholar 

  9. Gao, R., Zhao, M., Ye, T., Ye, F., Luo, G., Wang, Y., Bian, K., Wang, T., Li, X.: Multi-story indoor floor plan reconstruction via mobile crowdsensing. IEEE Trans. Mob. Comput. 15(6), 1427–1442 (2016)

    Article  Google Scholar 

  10. Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutorials 11(1), 13–32 (2009)

    Article  Google Scholar 

  11. He, S., Chan, S.H.G.: Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun. Surv. Tutorials 18(1), 466–490 (2016)

    Article  Google Scholar 

  12. He, S., Chan, S.H.G., Yu, L., Liu, N.: Fusing noisy fingerprints with distance bounds for indoor localization. In: Proceedings of IEEE INFOCOM, pp. 2506–2514 (2015)

    Google Scholar 

  13. Hilsenbeck, S., Bobkov, D., Schroth, G., Huitl, R., Steinbach, E.: Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning. In: Proceedings of ACM UbiComp, pp. 147–158 (2014)

    Google Scholar 

  14. Jun, J., Gu, Y., Cheng, L., Lu, B., Sun, J., Zhu, T., Niu, J.: Social-loc: improving indoor localization with social sensing. In: Proceedings of ACM SenSys, pp. 14:1–14:14 (2013)

    Google Scholar 

  15. Kjærgaard, M.B.: Indoor location fingerprinting with heterogeneous clients. Elsevier Trans. Pervasive Mob. Comput. 7(1), 31–43 (2011)

    Article  Google Scholar 

  16. Koenderink, J.J., Van Doorn, A.J., et al.: Affine structure from motion. J. Opt. Soc. Am. A 8(2), 377–385 (1991)

    Article  Google Scholar 

  17. Li, L., Shen, G., Zhao, C., Moscibroda, T., Lin, J.H., Zhao, F.: Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service. In: Proceedings of ACM MobiCom (2014)

    Google Scholar 

  18. Liu, H., Yang, J., Sidhom, S., Wang, Y., Chen, Y., Ye, F.: Accurate WiFi based localization for smartphones using peer assistance. IEEE Trans. Mob. Comput. 13(10), 2199–2214 (2014)

    Article  Google Scholar 

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Springer Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  20. Lymberopoulos, D., Liu, J., Yang, X., Choudhury, R.R., Handziski, V., Sen, S.: A realistic evaluation and comparison of indoor location technologies: experiences and lessons learned. In: Proceedings of ACM IPSN, pp. 178–189 (2015)

    Google Scholar 

  21. Mahtab Hossain, A., Jin, Y., Soh, W.S., Van, H.N.: SSD: a robust RF location fingerprint addressing mobile devices’ heterogeneity. IEEE Trans. Mob. Comput. 12(1), 65–77 (2013)

    Article  Google Scholar 

  22. Manweiler, J.G., Jain, P., Roy Choudhury, R.: Satellites in our pockets: an object positioning system using smartphones. In: Proceedings of the ACM MobiSys (2012)

    Google Scholar 

  23. Mautz, R., Tilch, S.: Survey of optical indoor positioning systems. In: Proceedings of the IPIN (2011)

    Google Scholar 

  24. Park, J.G., Curtis, D., Teller, S., Ledlie, J.: Implications of device diversity for organic localization. In: Proceedings of the IEEE INFOCOM (2011)

    Google Scholar 

  25. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-to-3d matching. In: Proceedings of the IEEE ICCV (2011)

    Google Scholar 

  26. Sen, S., Radunovic, B., Choudhury, R.R., Minka, T.: You are facing the Mona Lisa: spot localization using phy layer information. In: Proceedings of the ACM MobiSys, pp. 183–196 (2012)

    Google Scholar 

  27. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25(3), 835–846 (2006)

    Article  Google Scholar 

  28. Sorour, S., Lostanlen, Y., Valaee, S., Majeed, K.: Joint indoor localization and radio map construction with limited deployment load. IEEE Trans. Mob. Comput. 14(5), 1031–1043 (2015)

    Article  Google Scholar 

  29. Sun, W., Liu, J., Wu, C., Yang, Z., Zhang, X., Liu, Y.: MoLoc: on distinguishing fingerprint twins. In: Proceedings of the IEEE ICDCS, pp. 226–235 (2013)

    Google Scholar 

  30. Wang, H., Sen, S., Elgohary, A., Farid, M., Youssef, M., Choudhury, R.R.: No need to war-drive: unsupervised indoor localization. In: Proceedings of the ACM MobiSys (2012)

    Google Scholar 

  31. Wu, C.: Towards linear-time incremental structure from motion. In: Proceedings of the IEEE 3DV (2013)

    Google Scholar 

  32. Xie, H., Gu, T., Tao, X., Ye, H., Lv, J.: MaLoc: a practical magnetic fingerprinting approach to indoor localization using smartphones. In: Proceedings of the ACM UbiComp (2014)

    Google Scholar 

  33. Xu, H., Yang, Z., Zhou, Z., Shangguan, L., Yi, K., Liu, Y.: Indoor localization via multi-modal sensing on smartphones. In: Proceedings of the ACM UbiComp, pp. 208–219 (2016)

    Google Scholar 

  34. Yang, Z., Wu, C., Zhou, Z., Zhang, X., Wang, X., Liu, Y.: Mobility increases localizability: a survey on wireless indoor localization using inertial sensors. ACM Comput. Surv. 47(3), 54 (2015)

    Article  Google Scholar 

  35. Ye, X., Wang, Y., Hu, W., Song, L., Gu, Z., Li, D.: Warpmap: accurate and efficient indoor location by dynamic warping in sequence-type radio-map. In: Proceedings of the IEEE SECON, pp. 1–9 (2016)

    Google Scholar 

  36. Youssef, M., Agrawala, A.: The Horus WLAN location determination system. In: Proceedings of the ACM MobiSys (2005)

    Google Scholar 

  37. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: Proceedings of the IEEE/ACM/IFIP CODES+ISSS (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, C., Yang, Z., Liu, Y. (2018). Enhancing WiFi Fingerprinting with Visual Clues. In: Wireless Indoor Localization. Springer, Singapore. https://doi.org/10.1007/978-981-13-0356-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0356-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0355-5

  • Online ISBN: 978-981-13-0356-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics