Skip to main content

Exploiting Spatial Awareness via Fingerprint Spatial Gradient

  • Chapter
  • First Online:
  • 930 Accesses

Abstract

Current WiFi fingerprinting suffers from a pivotal problem of RSS fluctuations caused by unpredictable environmental dynamics. The RSS variations lead to severe spatial ambiguity and temporal instability in RSS fingerprinting, both impairing the location accuracy. In this chapter, we introduce fingerprint spatial gradient (FSG), a more stable and distinctive form than RSS fingerprints that overcomes such drawbacks. On this basis, we also present algorithms to construct FSG on top of a general RSS fingerprint database as well as effective FSG matching methods for location estimation. Unlike previous works, the resulting system, named ViVi, yields performance gain without the pains of introducing extra information or additional service restrictions or assuming impractical RSS models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Azizyan, M., Constandache, I., Roy Choudhury, R.: Surroundsense: mobile phone localization via ambience fingerprinting. In: Proceedings of the ACM MobiCom (2009)

    Google Scholar 

  2. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of the IEEE INFOCOM (2000)

    Google Scholar 

  3. Chen, Y., Yang, Q., Yin, J., Chai, X.: Power-efficient access-point selection for indoor location estimation. IEEE Trans. Knowl. Data Eng. 18(7), 877–888 (2006)

    Article  Google Scholar 

  4. Cheng, W., Tan, K., Omwando, V., Zhu, J., Mohapatra, P.: Rss-ratio for enhancing performance of rss-based applications. In: Proceedings of the IEEE INFOCOM (2013)

    Google Scholar 

  5. Chintalapudi, K., Padmanabha Iyer, A., Padmanabhan, V.N.: Indoor localization without the pain. In: Proceedings of the ACM MobiCom (2010)

    Google Scholar 

  6. Fang, S.H., Lin, T.: Principal component localization in indoor wlan environments. IEEE Trans. Mob. Comput. 11(1), 100–110 (2012)

    Article  Google Scholar 

  7. Han, D., Jung, S., Lee, M., Yoon, G.: Building a practical wi-fi-based indoor navigation system. IEEE Pervasive Comput. 13(2), 72–79 (2014)

    Article  Google Scholar 

  8. He, S., Chan, S.H.G.: Wi-fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun. Surv. Tutorials 18(1), 466–490 (2016)

    Article  Google Scholar 

  9. He, S., Hu, T., Chan, S.H.G.: Contour-based trilateration for indoor fingerprinting localization. In: Proceedings of the ACM SenSys (2015)

    Google Scholar 

  10. Hilsenbeck, S., Bobkov, D., Schroth, G., Huitl, R., Steinbach, E.: Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning. In: Proceedings of the ACM UbiComp (2014)

    Google Scholar 

  11. Jiang, Y., Xiang, Y., Pan, X., Li, K., Lv, Q., Dick, R.P., Shang, L., Hannigan, M.: Hallway based automatic indoor floorplan construction using room fingerprints. In: Proceedings of the ACM UbiComp (2013)

    Google Scholar 

  12. Jun, J., Gu, Y., Cheng, L., Lu, B., Sun, J., Zhu, T., Niu, J.: Social-loc: improving indoor localization with social sensing. In: Proceedings of the ACM SenSys (2013)

    Google Scholar 

  13. Kotaru, M., Joshi, K., Bharadia, D., Katti, S.: Spotfi:decimeter level localization using WiFi. In: Proceedings of the ACM SIGCOMM (2015)

    Google Scholar 

  14. Krishnan, P., Krishnakumar, A., Ju, W.H., Mallows, C., Ganu, S.: A system for lease: location estimation assisted by stationary emitters for indoor rf wireless networks. In: Proceedings of the IEEE INFOCOM (2004)

    Google Scholar 

  15. Li, L., Shen, G., Zhao, C., Moscibroda, T., Lin, J.H., Zhao, F.: Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service. In: Proceedings of the ACM MobiCom (2014)

    Google Scholar 

  16. Li, X., Li, S., Zhang, D., Xiong, J., Wang, Y., Mei, H.: Dynamic-music: accurate device-free indoor localization. In: Proceedings of ACM UbiComp (2016)

    Google Scholar 

  17. Liu, H., Gan, Y., Yang, J., Sidhom, S., Wang, Y., Chen, Y., Ye, F.: Push the limit of WiFi based localization for smartphones. In: Proceedings of the ACM MobiCom (2012)

    Google Scholar 

  18. Lymberopoulos, D., Liu, J., Yang, X., Choudhury, R.R., Handziski, V., Sen, S.: A realistic evaluation and comparison of indoor location technologies: experiences and lessons learned. In: Proceedings of ACM/IEEE IPSN (2015)

    Google Scholar 

  19. Mirowski, P., Whiting, P., Steck, H., Palaniappan, R., MacDonald, M., Hartmann, D., Ho, T.: Probability kernel regression for WiFi localisation. J. Locat. Based Serv. 6(2), 81–100 (2012)

    Article  Google Scholar 

  20. Nandakumar, R., Chintalapudi, K.K., Padmanabhan, V.N.: Centaur: locating devices in an office environment. In: Proceedings of the ACM MobiCom (2012)

    Google Scholar 

  21. Rai, A., Chintalapudi, K.K., Padmanabhan, V.N., Sen, R.: Zee: zero-effort crowdsourcing for indoor localization. In: Proceedings of the ACM MobiCom (2012)

    Google Scholar 

  22. Sen, S., Radunovic, B., Choudhury, R.R., Minka, T.: You are facing the Mona Lisa: spot localization using phy layer information. In: Proceedings of the ACM MobiSys (2012)

    Google Scholar 

  23. Shen, G., Chen, Z., Zhang, P., Moscibroda, T., Zhang, Y.: Walkie-Markie: indoor pathway mapping made easy. In: Proceedings of the USENIX NSDI (2013)

    Google Scholar 

  24. Shu, Y., Huang, Y., Zhang, J., Cou, P., Cheng, P., Chen, J., Shin, K.G.: Gradient-based fingerprinting for indoor localization and tracking. IEEE Trans. Ind. Electron. 63(4), 2424–2433 (2016)

    Article  Google Scholar 

  25. Sun, W., Liu, J., Wu, C., Yang, Z., Zhang, X., Liu, Y.: MoLoc: on distinguishing fingerprint twins. In: Proceedings of the IEEE ICDCS (2013)

    Google Scholar 

  26. Vasisht, D., Kumar, S., Katabi, D.: Decimeter-level localization with a single WiFi access point. In: Proceedings of the USENIX NSDI (2016)

    Google Scholar 

  27. Wang, H., Sen, S., Elgohary, A., Farid, M., Youssef, M., Choudhury, R.R.: No need to war-drive: unsupervised indoor localization. In: Proceedings of the ACM MobiSys (2012)

    Google Scholar 

  28. Wang, J., Jiang, H., Xiong, J., Jamieson, K., Chen, X., Fang, D., Xie, B.: Lifs: low human effort, device-free localization with fine-grained subcarrier information. In: Proceedings of ACM MobiCom (2016)

    Google Scholar 

  29. Wu, K., Xiao, J., Yi, Y., Gao, M., Ni, L.M.: Fila: fine-grained indoor localization. In: Proceedings of the IEEE INFOCOM (2012)

    Google Scholar 

  30. Wu, C., Yang, Z., Xiao, C., Yang, C., Liu, Y., Liu, M.: Static power of mobile devices: self-updating radio maps for wireless indoor localization. In: Proceedings of the IEEE INFOCOM (2015)

    Google Scholar 

  31. Xu, H., Yang, Z., Zhou, Z., Shangguan, L., Yi, K., Liu, Y.: Enhancing WiFi-based localization with visual clues. In: Proceedings of the ACM UbiComp (2015)

    Google Scholar 

  32. Yang, Z., Wu, C., Liu, Y.: Locating in fingerprint space: wireless indoor localization with little human intervention. In: Proceedings of the ACM MobiCom (2012)

    Google Scholar 

  33. Yang, Z., Wu, C., Zhou, Z., Zhang, X., Wang, X., Liu, Y.: Mobility increases localizability: a survey on wireless indoor localization using inertial sensors. ACM Comput. Surv. 47(3), 54:1–54:34 (2015)

    Google Scholar 

  34. Ye, X., Wang, Y., Hu, W., Song, L., Gu, Z., Li, D.: WarpMap: accurate and efficient indoor location by dynamic warping in sequence-type radio-map. In: Proceedings of the IEEE SECON (2016)

    Google Scholar 

  35. Yin, J., Yang, Q., Ni, L.M.: Learning adaptive temporal radio maps for signal-strength-based location estimation. IEEE Trans. Mob. Comput. 7(7), 869–883 (2008)

    Article  Google Scholar 

  36. Youssef, M., Agrawala, A.: The horus location determination system. Wirel. Netw. 14(3), 357–374 (2008)

    Article  Google Scholar 

  37. Zheng, Y., Shen, G., Li, L., Zhao, C., Li, M., Zhao, F.: Travi-Navi: self-deployable indoor navigation system. In: Proceedings of the ACM MobiCom (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, C., Yang, Z., Liu, Y. (2018). Exploiting Spatial Awareness via Fingerprint Spatial Gradient. In: Wireless Indoor Localization. Springer, Singapore. https://doi.org/10.1007/978-981-13-0356-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0356-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0355-5

  • Online ISBN: 978-981-13-0356-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics