Skip to main content

Role of Functional Bacterial Phylum Proteobacteria in Glycine max Growth Promotion Under Abiotic Stress: A Glimpse on Case Study

  • Chapter
  • First Online:
In Silico Approach for Sustainable Agriculture

Abstract

The PGPR elicit plant immunity referred to as induced systemic tolerance (IST) to cope up with abiotic stresses. The common modes of PGPR include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth, promoting beneficial plant–microbe symbioses and succumb diseases. The present review deals case study of salt-tolerant rhizobacteria with respect to its functional plant growth promotional activities. Genomic DNA was isolated from bacterial strain AK-1, and gene-specific primers were used to amplify the 16S ribosomal DNA, ACC deaminase gene (acdS gene), IAA gene (ipdC gene), P-solubilizing gene (gcd and gad gene), ectoine production gene (EctC gene) and glycine betaine gene (betA gene). Gene amplification using specific gene primers showed sharp bands of the specific genes near to desired amplicon size. Bacterial-inoculated plants were exhibited superior tolerance against salt stress, as shown by their higher plant biomass, water content, chlorophyll content and lower osmotic stress injury as compared to non-inoculated plants during salt stress. Increased proline accumulation and antioxidant activity in bacterial-inoculated plants also contributed to salt tolerance. This study was conducted to assess the PGPR that are associated with the rhizosphere of soybean grown in semiarid areas of Rajasthan. We also sought to identify and characterize representative PGPR with respect to growth-promoting attributes and studied their salinity tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algar E, Gutierrez-Mañero FJ, Garcia-Villaraco A, García-Seco D, Lucas JA, Ramos-Solano B (2014) The role of isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiol Biochem 82:9–16

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LM (2012) Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356(1–2):245–264

    Article  CAS  Google Scholar 

  • Armendariz AL, Talano MA, Wevar Oller AL, Medina MI, Agostini E (2015) Effect of arsenic on tolerance mechanisms of two plant growthpromoting bacteria used as biological inoculants. J Environ Sci 33:203–210

    Article  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Beneduzi A, Peres D, da Costa PB, Zanettini MHB, Passaglia LMP (2008) Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Res Microbiol 159:244–250

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  Google Scholar 

  • Çakmakçı R, Dönmez MF, Ertürk Y, Erat M, Haznedar A, Sekban R (2010) Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant Soil 332:299–318

    Article  CAS  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  CAS  Google Scholar 

  • Cheng Z, Duncker BP, McConkey BJ, Glick BR (2008) Transcriptional regulation of ACC deaminase gene expression in Pseudomonas putida UW4. Can J Microbiol 54:128–136

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96(5):1137–1155

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2015) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 1:25

    Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Jerzy N, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1- Aminocyclopropane-1- carboxylate (ACC) deaminase genes in Rhizobia from southern Saskatchewan. Microb Ecol 57:423–436

    Article  CAS  Google Scholar 

  • Egamberdieva D, Shurigin V, Gopalakrishnan S, Sharma R (2015) Microbial strategies for the improvement of legume production in hostile environments. In: Azooz MM, Ahmad P (eds) Legumes under environmental stress: yield, improvement and adaptations, 1st edn. Wiley, Hoboken

    Google Scholar 

  • FAO (2013) Climate-smart agriculture sourcebook

    Google Scholar 

  • Farina R, Beneduzi A, Ambrosini A, de Campos SB, Lisboa SS, Wendisch V, Vargas LK, Passaglia LMP (2012) Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. App Soil Ecol 55:44–52

    Article  Google Scholar 

  • Fernández-Bidondo L, Silvani V, Colombo R, Pérgola M, Bompadre J, Godeas A (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenobacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani K, Taifeh-Noori M (2011) Soybean performance under salinity stress. INTECH Open Access Publisher, Rijeka

    Book  Google Scholar 

  • Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) International edition: Bergey’s manual of determinative bacteriology. Springer Science+Business Media, New York

    Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of the 1-aminocyclopropane-1-carboxylic acid deaminase from the rhizobacterium P. putida UW4: a key enzyme in bacterial plant growth promotion. Biochem Biophys Acta 1703:11–19

    PubMed  CAS  Google Scholar 

  • Hu M, Zhang C, Mu Y, Shen Q, Feng Y (2010) Indole affects biofilm formation in bacteria. Ind J Microbiol 50(4):362–368

    Article  CAS  Google Scholar 

  • Jain S, Vaishnav A, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Bacteria-induced systemic resistance and growth promotion in Glycine max L. Merrill upon challenge inoculation with Fusarium oxysporum. Proc Natl Acad Sci India Biol Sci 83:561–567

    Article  CAS  Google Scholar 

  • Jain S, Vaishnav A, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2014) Bacteria-induced systemic resistance and growth promotion in Glycine max L. Merrill upon challenge inoculation with Fusarium oxysporum. Proc Natl Acad Sci India Biol Sci 83:561–567

    Article  CAS  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Juge C, Prévost D, Bertrand A, Bipfubusa M, Chalifour FP (2012) Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Appl Soil Ecol 61:147–157

    Article  Google Scholar 

  • Karmakar K, Rana A, Rajwar A, Sahgal M, Johri BN (2015) Legume-rhizobia symbiosis under stress. In: Arora NK (ed) Plant microbes Symbiosis: applied facets, vol 241. Springer, India. https://doi.org/10.1007/978-81-322-2068-8_12

    Chapter  Google Scholar 

  • Khodair TA, Galal GF, El-Tayeb TS (2008) Effect of inoculating wheat seedlings with exopolysaccharide-producing bacteria in saline soil. J Appl Sci Res 4:2065–2070

    Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573

    Article  CAS  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016) Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J Microbiol Biotechnol 32(1): 1–0

    Google Scholar 

  • Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marra LM, Soares CRFS, de Oliveira SM, Ferreira PAA, Soares BL, de Fráguas CR, de Lima JM, de Souza Moreira FM (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307

    Article  CAS  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  PubMed  Google Scholar 

  • Mia MB, Shamsuddin ZH (2013) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9:6001–6009

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00170

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Naz I, Bano A, Hassan T-U (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8(21):5762–5766

    Article  CAS  Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA, El-Daim A (2009) Improvement of salt tolerance mechanisms of barely cultivated under salt stress using Azospirillum brasilense. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress, vol 44. Springer, Netherlands, pp 133–147

    Chapter  Google Scholar 

  • Prudent M, Vernoud V, Girodet S, Salon C (2015) How nitrogen fixation is modulated in response to different water availability levels and during recovery: a structural and functional study at the whole plant level. Plant Soil 399:1–12

    Article  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2011) Osmoadaptation and plant growth promotion by salt tolerant bacteria under salt stress. Afr J Microbiol Res 5:3546–3554

    CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Yadav N, Joshi OP (2014a) Phosphorus mobilization from native soil p-pool upon inoculation with phytate-mineralizing and phosphate solubilizing Bacillus aryabhattai isolates for improved p-acquisition and growth of soybean and wheat crops in microcosm conditions. Agric Res 3:118–127

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014b) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of Central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Salavati A, Bushehri AAS, Taleei A, Hiraga S, Komatsu S (2012) A comparative proteomic analysis of the early response to compatible symbiotic bacteria in the roots of a supernodulating soybean variety. J Proteome 75:819–832

    Article  CAS  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MDC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22:855–872

    Article  Google Scholar 

  • Schubert S, Neubert A, Schierholt A, Su¨mer A, Zörb C (2009) Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Sci 177:196–202

    Article  CAS  Google Scholar 

  • Shafique A, Rehman S, Khan A, Kazi AG (2014) Improvement of legume crop production under environmental stresses through biotechnological intervention. In: Ahmad P (ed) Emerging Technologies and Management of Crop Stress Tolerance, vol 2. https://doi.org/10.1016/B978-0-12-800875-1.00001-6

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  Google Scholar 

  • Simonetti E, Viso NP, Montecchia M, Zilli C, Balestrasse K, Carmona M (2015) Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiol Res 180:40–48

    Article  CAS  PubMed  Google Scholar 

  • Singh O, Gupta M, Mittal V, Kiran S, Nayyar H, Gulati A, Tewari R (2014) Novel phosphate solubilizing bacteria ‘Pantoea cypripedii PS1’along with Enterobacter aerogenes PS16 and Rhizobium ciceri enhance the growth of chickpea (Cicer arietinum L.). Plant Growth Regul 73:79–89

    Article  CAS  Google Scholar 

  • Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    Article  CAS  PubMed  Google Scholar 

  • Stefan M, Dunca S, Olteanu Z, Oprica L, Ungureanu E, Hritcu L, Mihasan M, Cojocaru D (2011) Soybean (Glycine max [L] Merr.) inoculation with Bacillus pumilus RS3 promotes plant growth and increases seed protein yield: relevance for environmentally-friendly agricultural applications. Carpathian J Earth Environ Sci 5:131–138

    Google Scholar 

  • Sun L, Qiu FB, Zhang XX, Dai X, Dong XZ, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–222

    Article  CAS  Google Scholar 

  • USDA (2015) World agriculture production

    Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551

    Article  CAS  PubMed  Google Scholar 

  • Vardharajula S, Ali SKZ, Grover M, Reddy G, Bandi V (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Vassilev N, Eichler-Löbermann B, Vassileva M (2012) Stress-tolerant P-solubilizing microorganisms. Appl Microbiol Biotechnol 95:851–859

    Article  CAS  PubMed  Google Scholar 

  • Wang C-J, Yang W, Wang C, Gu C, Niu D-D, Liu H-X, Wang Y-P, Guo J-H (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 12:1–10

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by SERB-Grant no. SR/FT/LS-129/2012 to DKC. Some of the research has partially been supported by DBT grant no. BT/PR1231/AGR/21/340/2011 to DKC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaishnav, A., Kasotia, A., Choudhary, D.K. (2018). Role of Functional Bacterial Phylum Proteobacteria in Glycine max Growth Promotion Under Abiotic Stress: A Glimpse on Case Study. In: Choudhary, D., Kumar, M., Prasad, R., Kumar, V. (eds) In Silico Approach for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-0347-0_2

Download citation

Publish with us

Policies and ethics