Skip to main content

Sustainable Agriculture: Role of Metagenomics and Metabolomics in Exploring the Soil Microbiota

  • Chapter
  • First Online:
In Silico Approach for Sustainable Agriculture

Abstract

Land-use change and agricultural management have important effects on soil microbiome, as they change the physical and chemical properties of soil. In addition, agricultural management (e.g., tillage, pesticide, and fertilizer applications) directly affects soil biodiversity by altering the physical and chemical properties of soil. Soil metagenomics, which comprises of isolation of soil DNA and the production and screening of clone libraries, can provide a cultivation-independent assessment of the largely untapped genetic reservoir of soil microbial communities. This approach has already led to the identification of novel genes and biomolecules. Metabolism of different microorganisms that change in response to different environmental conditions can be studied by analysis of metabolic footprinting. The concentration of extracellular metabolites varies depending on the factors including temperature, pH, and the concentration of nutrients. These factors affect the uptake and secretion of metabolites from soil. This chapter describes how these novel tools have helped to explore the microbiota of the soil and how these can be used as a guiding line to innovate new agricultural norms for sustainable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Sanchez B, Priego-Capote F, de Castro ML (2010) Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem 29(2):120–127

    Article  CAS  Google Scholar 

  • Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411(6839):786–789

    Article  PubMed  Google Scholar 

  • Béjà O, Koonin EV, Aravind L, Taylor LT, Seitz H, Stein JL, Bensen DC, Feldman RA, Swanson RV, DeLong EF (2002) Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl Environ Microbiol 68(1):335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH, Chung YR, Lee SW (2008) Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl Environ Microbiol 74(3):723–730

    Article  CAS  PubMed  Google Scholar 

  • Cottrell MT, Moore JA, Kirchman DL (1999) Chitinases from uncultured marine microorganisms. Appl Environ Microbiol 65(6):2553–2557

    PubMed  PubMed Central  CAS  Google Scholar 

  • Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS, August PR (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69(1):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol Biochem 30(8):983–993

    Article  CAS  Google Scholar 

  • Daniel R (2004) The soil metagenome–a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15(3):199–204

    Article  CAS  PubMed  Google Scholar 

  • Defernez M, Gunning YM, Parr AJ, Shepherd LV, Davies HV, Colquhoun IJ (2004) NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. J Agric Food Chem 52(20):6075–6085

    Article  CAS  PubMed  Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77(4):1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67(1):89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer M, Martínez-Abarca F, Golyshin PN (2005) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16(6):588–593

    Article  CAS  PubMed  Google Scholar 

  • Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn-Jones D (2003) Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry 63(6):705–710

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68(9):4301–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henne A, Daniel R, Schmitz RA, Gottschalk G (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65(9):3901–3907

    PubMed  PubMed Central  CAS  Google Scholar 

  • Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66(7):3113–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann JF, Carvalho IR, Barbieri RL, Rombaldi CV, Chaves FC (2017) Butia spp.(Arecaceae) LC-MS-based metabolomics for species and geographical origin discrimination. J Agric Food Chem 65(2):523–532

    Article  CAS  PubMed  Google Scholar 

  • Hofreiter M, Rabeder G, Jaenicke-Després V, Withalm G, Nagel D, Paunovic M, JambrÄ•sić G, Pääbo S (2004) Evidence for reproductive isolation between cave bear populations. Curr Biol 14(1):40–43

    Article  CAS  PubMed  Google Scholar 

  • Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54(3):703–711

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI (1992) Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res 20(5):1083–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TK, Hewavitharana AK, Shaw PN, Fuerst JA (2006) Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl Environ Microbiol 72(3):2118–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knietsch A, Bowien S, Whited G, Gottschalk G, Daniel R (2003) Identification and characterization of coenzyme B12-dependent glycerol dehydratase-and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol 69(6):3048–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz EM, Weeks JM, Lindon JC, Osborn D, Nicholson JK (2005) Qualitative high field 1 H-NMR spectroscopy for the characterization of endogenous metabolites in earthworms with biochemical biomarker potential. Metabolomics 1(2):123–136

    Article  CAS  Google Scholar 

  • Li ZY, Liu Y (2006) Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43(4):410–416

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wexler M, Richardson DJ, Bond PL, Johnston AW (2005) Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes. Environ Microbiol 7(12):1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13(6):572–577

    Article  CAS  PubMed  Google Scholar 

  • MacNeil IA, Tiong CL, Minor C, August PR, Grossman TH, Loiacono KA, Lynch BA, Phillips T, Narula S, Sundaramoorthi R, Tyler A (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3(2):301–308

    PubMed  CAS  Google Scholar 

  • Majerník A, Gottschalk G, Daniel R (2001) Screening of environmental DNA libraries for the presence of genes conferring Na+ (Li+)/H+ antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol 183(22):6645–6653

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez A, Kolvek SJ, Yip CL, Hopke J, Brown KA, MacNeil IA, Osburne MS (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70(4):2452–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazir A (2016) Review on metagenomics and its applications. Imp J Interdiscip Res 2(3):277–286

    Google Scholar 

  • Noble AD, Ruaysoongnern S (2010) The nature of sustainable agriculture. In: Soil microbiology and sustainable crop production. Springer, Dordrecht, pp 1–25

    Google Scholar 

  • Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34(19):5623–5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7(2–3):57–66

    Article  CAS  Google Scholar 

  • Piel J (2011) Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol 65:431–453

    Article  CAS  PubMed  Google Scholar 

  • Prosser GA, Larrouy-Maumus G, de Carvalho LP (2014) Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep 15(6):657–669

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pinu FR, Villas-Boas SG (2017) Extracellular microbial metabolomics: the state of the art. Metabolites 7(3):43

    Article  CAS  PubMed Central  Google Scholar 

  • Quaiser A, Ochsenreiter T, Lanz C, Schuster SC, Treusch AH, Eck J, Schleper C (2003) Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50(2):563–575

    Article  CAS  PubMed  Google Scholar 

  • Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308(5730):1915–1920

    Article  CAS  PubMed  Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9):981–989

    Article  CAS  PubMed  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39(4):183–190

    Article  CAS  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein JL, Marsh TL, Wu KY, Shizuya H, DeLong EF (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol 178(3):591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito N, Robert M, Kitamura S, Baran R, Soga T, Mori H, Nishioka T, Tomita M (2006) Metabolomics approach for enzyme discovery. Seikagaku J Jpn Biochem Soc 83(11):1039–1043

    Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14(3):303–310

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75(5):955–962

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    Article  CAS  PubMed  Google Scholar 

  • Schripsema J (2010) Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochem Anal 21(1):14–21

    Article  CAS  PubMed  Google Scholar 

  • Shuman JL, Cortes DF, Armenta JM, Pokrzywa RM, Mendes P, Shulaev V (2011) Plant metabolomics by GC-MS and differential analysis. Plant Reverse Genet Methods Protocol:229–246

    Google Scholar 

  • Soo EC, Aubry AJ, Logan SM, Guerry P, Kelly JF, Young NM, Thibault P (2004) Selective detection and identification of sugar nucleotides by CE− electrospray-MS and its application to bacterial metabolomics. Anal Chem 76(3):619–626

    Article  CAS  PubMed  Google Scholar 

  • Spencer DH, Kas A, Smith EE, Raymond CK, Sims EH, Hastings M, Burns JL, Kaul R, Olson MV (2003) Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol 185(4):1316–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440(7085):790–794

    Article  PubMed  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). 3 Biotech 5(4):433–441

    Article  PubMed  Google Scholar 

  • Teeling H, Glöckner FO (2012) Current opportunities and challenges in microbial metagenome analysis—a bioinformatic perspective. Brief Bioinform 13(6):728–742

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23(1):88–93

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Aguilera A, Ferrer C, Camacho F, Cammarano A (2010) Analysis of forchlorfenuron in vegetables by LC/TOF-MS after extraction with the buffered QuEChERS method. J Agric Food Chem 58(5):2818–2823

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74

    Article  PubMed  Google Scholar 

  • Villas-Bôas SG, Bruheim P (2007) Cold glycerol–saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal Biochem 370(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69(10):6235–6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GY, Graziani E, Waters B, Pan W, Li X, McDermott J, Meurer G, Saxena G, Andersen RJ, Davies J (2000) Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2(16):2401–2404

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu L, Shen H, Wang J, Liu W, Zhu X, Wang R, Sun X, Liu L (2015) Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots. Sci Rep 5:18296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson LL, Borlee BR, Schloss PD, Guan C, Allen HK, Handelsman J (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 71(10):6335–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM (2005) HPLC-MS-based methods for the study of metabonomics. J Chromatogr B 817(1):67–76

    Article  CAS  Google Scholar 

  • Walter J, Mangold M, Tannock GW (2005) Construction, analysis, and β-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol 71(5):2347–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Kim HK, van Wezel GP, Choi YH (2015) Metabolomics in the natural products field–a gateway to novel antibiotics. Drug Discov Today Technol 13:11–17

    Article  PubMed  Google Scholar 

  • Xing MN, Zhang XZ, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30(4):920–929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

PB thanks DST-SERB: SB/YS/LS-213/2013 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, N., Vats, S., Bhargava, P. (2018). Sustainable Agriculture: Role of Metagenomics and Metabolomics in Exploring the Soil Microbiota. In: Choudhary, D., Kumar, M., Prasad, R., Kumar, V. (eds) In Silico Approach for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-0347-0_11

Download citation

Publish with us

Policies and ethics