Skip to main content

Thermophiles and Their Exploration for Thermostable Enzyme Production

  • Chapter
  • First Online:
Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 8))

  • 913 Accesses

Abstract

Currently no more than 1% of the total microbial species that exists in nature is known, the deal of known microorganisms in extremophilic niches being even much less. Thermophiles are a type of extremophiles which study is related to clarifying a number of fundamental issues such as origin of life and molecular mechanisms of thermostability, revealing the vast potential of their enzymes for biotechnological use. Microbial biodiversity in Eurasian hot springs is still badly known, and molecular analyses revealed a presence of significant part of unknown groups comparable with those of well-studied Yellowstone and Iceland springs. Intensive studies on ecology, physiology, and molecular biology of extremophiles provide valuable insight into the life processes at each level, as well as the potential for numerous industrial applications. Thermophilic molecules suggest many advantages in their exploration as biocatalysts; however known enzymes still are not able to satisfy evolving new needs and requirements of biotechnological processes, among which their stability under industrial conditions is of particular importance. Nowadays, different approaches are used to find the desired enzyme activities including direct screening in big microbial collections, metagenome screening, and shotgun sequencing, the last two based on analysis of the coding regions of the known enzymes. Direct screening confirms unambiguously the real existence and several functional characteristics of an enzyme activity. Metagenome is accepted as a huge reservoir of taxonomic and functional genes and therefore is seeing as a feasible possibility to introduce more and diverse enzymes with better performance meeting the global demand for new catalysts. The discovery of new microbial species as well as the sequencing of new genomes and metagenomes allows access to new enzymes with new application capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akanuma S, Nakajima Y, Yokobori S, Kimura M, Nemoto N, Mase T, Miyazono K, Tanokura M, Yamagishi A (2013) Experimental evidence for the thermophilicity of ancestral life. Proc Natl Acad Sci U S A 110(27):11067–11072

    Article  PubMed  PubMed Central  Google Scholar 

  • Amann R (2000) Who is out there? Microbial aspects of diversity. Syst Appl Microbiol 23:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bergquist PL, Morgan HW, Saul D (2014) Selected enzymes from extreme thermophiles with applications in biotechnology. Curr Biotechnol 3(1):45–59

    Article  CAS  Google Scholar 

  • Białkowska A, Gromek E, Florczak T, Krysiak J, Szulczewska K, Turkiewicz M (2016) Extremophilic proteases: developments of their special functions, potential resources and biotechnological applications. In: Rampelotto PH (ed) Biotechnology of extremophiles. Springer, Cham, pp 399–444

    Chapter  Google Scholar 

  • Boehmwald F, Muñoz P, Flores P, Blamey JM (2016) Functional screening for the discovery of new extremophilic enzymes. In: Rampelotto PH (ed) Biotechnology of extremophiles. Springer, Cham, pp 321–350

    Chapter  Google Scholar 

  • Boone DR, Castenholz RW, Garrity GM (2001) The Archaea and the deeply branching and phototrophic Bacteria. In: Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 169–620

    Chapter  Google Scholar 

  • Borges N, Matsumi R, Imanaka T, Atomi H, Santos H (2010) Thermococcus kodakaraensis mutants deficient in di-myo-inositol phosphate use aspartate to cope with heat stress. J Bacteriol 192(1):191–197

    Article  CAS  PubMed  Google Scholar 

  • Brochier C, Philippe H (2002) Phylogeny: a non-hyperthermophilic ancestor for Bacteria. Nature 417:244

    Article  CAS  PubMed  Google Scholar 

  • Burg D, Ng C, Ting L, Cavicchioli R (2011) Proteomics of extremophiles. Environ Microbiol 13(8):1934–1955

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Xie Y, Song BK, Wang Y, Zhang Z, Feng Y (2011) Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V. Appl Microbiol Biotechnol 89(5):1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CC (2017) Whole cell biocatalysts: essential workers from nature to the industry. Microb Biotechnol 10(2):250–263

    Article  PubMed  Google Scholar 

  • Chan CS, Chan KG, Tay YL, Chua YH, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:Article 177

    PubMed  Google Scholar 

  • Daniel RM, Cowan DA (2000) Biomolecular stability and life at high temperatures. Cell Mol Life Sci 57(2):250–264

    Article  CAS  PubMed  Google Scholar 

  • De la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahll DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10(3):810–818

    Article  CAS  PubMed  Google Scholar 

  • DeCastro ME, Rodríguez-Belmonte E, González-Siso MI (2016) Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front Microbiol 7:Article 1521

    Article  PubMed  Google Scholar 

  • du Plessis EM, Berger E, Stark T, Louw ME, Visser D (2010) Characterization of a novel thermostable esterase from Thermus scotoductus SA-01: evidence of a new family of lipolytic esterases. Curr Microbiol 60(4):248–253

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Fondi M, Bosi E, Giudice AL, Fani R (2016) A systems biology view on bacterial response to temperature shift. In: Rampelotto PH (ed) Biotechnology of extremophiles. Springer, Cham, pp 597–618

    Chapter  Google Scholar 

  • Forterre PA (2002) Hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet 18(5):236–237

    Article  CAS  PubMed  Google Scholar 

  • Fuciños P, Atanes E, Lopez-lopez O, Solaroli M, Cerdan ME, Gonzalez-Siso MI, Pastrana L, Rua ML (2014) Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochem 49(6):927–935

    Article  CAS  Google Scholar 

  • Gabor EM, Alkema WB, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Appl Environ Microbiol 6(9):879–886

    CAS  Google Scholar 

  • Galperin MY, Koonin EV (2010) From complete genome sequence to “complete” understanding? Trends Biotechnol 28(8):398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Bal B, Kashyap VK, Pal S (2003) Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of Shewanella-related thermophiles. Appl Environ Microbiol 69(7):4332–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–235

    CAS  Google Scholar 

  • Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M (2012) Engineering genes for predictable protein expression. Protein Expr Purif 83(1):37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He YZ, Fan KQ, Jia CJ, Wang ZJ, Pan WB, Huang L, Yang KQ, Dong ZY (2007) Characterization of a hyperthermostable Fe-superoxide dismutase from hot spring. Appl Microbiol Biotechnol 75(2):367–376

    Article  CAS  PubMed  Google Scholar 

  • Hedlund BP, Dodsworth JA, Cole JK, Panosyan HH (2013) An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs. Antonie Leeuwenhoek 104(1):71–82

    Article  PubMed  Google Scholar 

  • Hreggvidsson GO, Kristjanssоn JK (2003) Thermophily. In: Gerday C, Glansdorff N (eds) Extremophiles – encyclopedia of life support systems (EOLSS). EOLSS Publishers, Oxford

    Google Scholar 

  • Huang R, Chen H, Zhong C, Kim JE, Zhang YHP (2016) High-throughput screening of coenzyme preference change of thermophilic 6-phosphogluconate dehydrogenase from NADP+ to NAD+. Sci Rep 6:32644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180(2):366–376

    PubMed  PubMed Central  CAS  Google Scholar 

  • Imanaka T (2011) Molecular bases of thermophily in hyperthermophiles. Proc Jpn Acad Ser B Phys Biol Sci 87(9):587–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal I, Aftab MN, Afzal M, Ur-Rehman A, Aftab S, Zafat A, Ud-Din Z, Khuharo AR, Iqbal J, Ul-Haq I (2015) Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus. J Basic Microbiol 55(2):160–171

    Article  CAS  PubMed  Google Scholar 

  • Islas S, Velasco AM, Becerra A, Delaye L, Lazcano A (2003) Hyperthermophily and the origin and earliest evolution of life. Int Microbiol 6(2):87–94

    Article  CAS  PubMed  Google Scholar 

  • Ivanova I, Atanassov I, Lyutskanova D, Stoilova-Disheva M, Dimitrova D, Tomova I, Derekova A, Radeva G, Buchvarova V, Kambourova M (2011) High archaea diversity in Varvara hot spring, Bulgaria. J Basic Microbiol 51(2):163–172

    Article  PubMed  Google Scholar 

  • Jollivet D, Mary J, Gagniere N, Tanguy A, Fontanillas E, Boutet I, Hourdez S, Segurens B, Weissenbach J, Poch O, Lecompte O (2012) Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm. PLoS One 7(2):e31150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambourova M, Kirilova N, Mandeva R, Derekova A (2003) Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC 7. J Mol Catal B Enzym 22(5–6):307–313

    Article  CAS  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462

    Article  CAS  PubMed  Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41–53

    Article  CAS  Google Scholar 

  • Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69(11):2019–2034

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SV (2003) Role of actinomycetes in environment. In: Kumar A et al (eds) Environment, pollution and management. A.R.H. Publishing Corporation, New Delhi, pp 531–542

    Google Scholar 

  • Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10(2):121–135

    Article  CAS  Google Scholar 

  • Lagzian M, Asoodeh A (2012) An extremely thermotolerant, alkaliphilic subtilisin-like protease from hyperthermophilic Bacillus sp. MLA64. Int J Biol Macromol 51(5):960–967

    Article  CAS  PubMed  Google Scholar 

  • Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC (2015) Current and future resources for functional metagenomics. Front Microbiol 6:Article 1196

    Article  PubMed  Google Scholar 

  • Lämmle K, Zipper H, Breuer M, Hauer B, Buta C, Brunner H, Rupp S (2007) Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J Biotechnol 127(4):575–592

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Kang SG, Bae SS, Lim JK, Cho Y, Kim YJ, Jeon JH, Cha SS, Kwon KK, Kim HT, Park CJ, Lee HW, Kim SI, Chun J, Colwell RR, Kim SJ, Lee JH (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190(22):7491–7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: applications, marketing and engineering. Comput Struct Biotechnol J 2:e201209017

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Voutilainen S, Ojamo H, Turunen O (2015) Stability and activity of Dictyoglomus thermophilum GH11 xylanase and its disulphide mutant at high pressure and temperature. Enzym Microb Technol 70:66–71

    Article  CAS  Google Scholar 

  • López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Peptide Sci 15(5):445–455

    Article  CAS  Google Scholar 

  • Lynn DJ, Singer GAC, Hickey DA (2002) Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res 30(19):4272–4277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75

    Article  Google Scholar 

  • Mangrola A, Dudhagara P, Koringa P, Joshi CG, Parmar M, Patel R (2015) Deciphering the microbiota of Tuwa hot spring, India using shotgun metagenomic sequencing approach. Genomics Data 4:153–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehetre GT, Paranjpe AS, Dastager SG, Dharne MS (2016) Complete metagenome sequencing based bacterial diversity and functional insights from basaltic hot spring of Unkeshwar, Maharashtra, India. Genomics Data 7:140–143

    Article  PubMed  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9(8):e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mühling M, Joint I, Willetts AJ (2013) The biodiscovery potential of marine bacteria: an investigation of phylogeny and function. Microb Biotechnol 6(4):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neil J, Carlson RW, Francis E, Stevenson RK (2008) Neodymium-142 evidence for Hadean mafic crust. Science 321(5897):1828–1831

    Article  CAS  PubMed  Google Scholar 

  • Oren А (2009) Systematics of Archaea and Bacteria. In: Minelli A, Contrafatto G (eds) Biological science: fundamentals and systematics, vol 2. Eolss Publishers Co Ltd., Oxford, pp 244–269

    Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42(D1):D206–D214

    Article  CAS  PubMed  Google Scholar 

  • Panosyan H, Birkeland NK (2014) Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods. J Basic Microbiol 54(11):1240–1250

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Zhang Y, Tu R, Lin Y, Li X, Wang Q (2011) High-throughput screening and characterization of xylose-utilizing, ethanol-tolerant thermophilic bacteria for bioethanol production. J Appl Microbiol 110(6):1584–1591

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Sammond DW, Kastelowitz N, Michael E, Himmel ME, Yin H, Crowley MF, Yannick J, Bomble YJ (2016) Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms. PLoS One 11(1):e0145848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89(1):78–90

    Google Scholar 

  • Sharma SK, Christen P, Goloubinoff P (2009) Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci 10(5):432–446

    Article  CAS  PubMed  Google Scholar 

  • Sharon I, Banfield J (2013) Genomes from metagenomics. Science 342(6162):1057–1058

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Zhang Y, Li X, Huang Y, Wang L, Wang Y, Ding H, Wang F (2013) A novel highly thermostable xylanase stimulated by Ca2+ from Thermotoga thermarum: cloning, expression and characterization. Biotechnol Biofuels 6(1):26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66(7):2835–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter KO (1994) The lesson of Archaebacteria. In: Bengtson S (ed) Early life on Earth, Nobel symposium no. 84. Columbia University Press, New York, pp 143–151

    Google Scholar 

  • Stetter KO (2001) Hyperthermophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology – the quest for the conditions of life. Springer, Berlin, pp 169–184

    Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194(16):4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Mackie RI, Cann IK (2012) Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii. Appl Environ Microbiol 78(7):2230–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105(31):10949–10954

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao W, Shengxue F, Duobin M, Xuan Y, Congcong D, Xihua W (2013) Characterization of a new thermophilic and acid tolerant esterase from Thermotoga maritima capable of hydrolytic resolution of racemic ketoprofen ethyl ester. J Mol Catal B Enzym 85–86:23–30

    Article  CAS  Google Scholar 

  • Taylor TJ, Vaisman II (2010) Discrimination of thermophilic and mesophilic proteins. BMC Struct Biol 10(Suppl 1):S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Te’o VS, Cziferszky AE, Bergquist PL, Nevalainen KH (2000) Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiol Lett 190(1):13–19

    Article  PubMed  Google Scholar 

  • Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongarama T, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Tomova I, Stoilova-Disheva M, Lyutskanova D, Pascual J, Petrov P, Kambourova M (2010) Phylogenetic analysis of the bacterial community in a geothermal spring, Rupi basin, Bulgaria. World J Microbiol Biotechnol 26(11):2019–2028

    Article  Google Scholar 

  • Toplak A, Wu B, Fusetti F, Quaedfl ieg PJ, Janssen DB (2013) Proteolysin, a novel highly thermostable and cosolvent-compatible protease from the thermophilic bacterium Coprothermobacter proteolyticus. Appl Environ Microbiol 79(18):5625–5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanFossen AL, Ozdemir I, Zelin SL, Kelly RM (2011) Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 108(7):1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Vendittis E, Castellano I, Cotugno R, Ruocco MR, Raimo G, Masullo M (2008) Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition. J Theor Biol 250(1):156–171

    Article  CAS  PubMed  Google Scholar 

  • Vibha B, Neelam G (2012) Importance of exploration of microbial biodiversity. Int Res J Biol Sci 1(3):78–83

    Google Scholar 

  • Wemheuer B, Taube R, Akyol A, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka peninsula. Archaea 2013:Article ID 136714

    Article  CAS  Google Scholar 

  • Yamamoto H, Hiraishi A, Kato K, Chiura HX, Maki Y, Shimizu A (1998) Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64(5):1680–1687

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H, Liu L, Li J, Chen J, Du G (2015) Rational design to improve protein thermostability: recent advances and prospects. Chem Bio Eng Rev 2(2):87–94

    CAS  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635–645

    Article  CAS  PubMed  Google Scholar 

  • Yun SH, Choi CW, Lee SY, Park EC, Kim SI (2016) A proteomics approach for the identification of novel proteins in extremophiles. In: Rampelotto PH (ed) Biotechnology of extremophiles. Springer, Cham, pp 303–319

    Chapter  Google Scholar 

  • Zhu Y, Li H, Ni H, Xiao A, Li L, Cai H (2015) Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9. World J Microbiol Biotechnol 31(2):295–306

    Article  CAS  PubMed  Google Scholar 

  • Zylicz-Stachula A, Zolnierkiewicz O, Sliwinska K, Jezewska-Frackowiak J, Skowron P (2014) Modified ‘one amino acid-one codon’ engineering of high GC content TaqII-coding gene from thermophilic Thermus aquaticus results in radical expression increase. Microb Cell Factories 13:7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Kambourova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boteva, N., Kambourova, M. (2018). Thermophiles and Their Exploration for Thermostable Enzyme Production. In: Egamberdieva, D., Birkeland, NK., Panosyan, H., Li, WJ. (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-13-0329-6_6

Download citation

Publish with us

Policies and ethics