Skip to main content

Design and Processing of Functionally Graded Material: Review and Current Status of Research

  • Chapter
  • First Online:
3D Printing and Additive Manufacturing Technologies

Abstract

Functionally graded materials (FGMs) are superiorly engineered as well as natural materials with customized properties. These materials offer a variety of advantages over conventional materials in specific engineering applications. High strength, improved ductility, superior mechanical properties and enhanced surface properties are some advantages of FGMs when compared to homogeneous materials of the same type. Engineered FGMs have intrigued numerous researchers in recent years. These materials were conceived as thermal obstruction materials for various critical applications. These are increasingly being employed for numerous conventional as well as advanced applications. Many methods are utilized in developing FGMs possessing specific advantages and disadvantages. This article reviews current trends and developments of functionally graded materials (FGMs). Techniques to attain gradation especially structural and functional are emphasized in the current work. A few real life illustrations are discussed to present a glimpse of different FGM fabrication strategies to the readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J. Sobczak, L.B.L. Drenchev, Metal Based Functionally Graded Materials (2009), p. 74

    Google Scholar 

  2. R.K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, Y. Nishina, Graphene oxide: the new membrane material. Appl. Mater. Today 1(1), 1–12 (2015)

    Article  Google Scholar 

  3. M. Shen, M.B. Bever, Gradients in polymeric materials. J. Mater. Sci. 7, 741–746 (1972)

    Article  Google Scholar 

  4. M.B. Bever, P.E. Duwez, Gradients in composite materials. Mater. Sci. Eng. 10, 1–8 (1972)

    Article  Google Scholar 

  5. T. Hirai, R. Watanabe, M. Niino, The functional gradient materials. J. Jap. Soc. Compos. Mat. 13, 257–264

    Google Scholar 

  6. Fundamental study on relaxation of thermal stress for high temperature material by tailoring the graded structure (1992)

    Google Scholar 

  7. M. Niino et al., Fabrication of a high pressure thrust chamber by the CIP forming method. AIAA Pap. 84–1227 (1984)

    Google Scholar 

  8. R.M. Mahamood, E.T.A. Member, M. Shukla, S. Pityana, Functionally graded material : an overview, 3, 2–6 (2012)

    Google Scholar 

  9. R.G. Ford, Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, Functionally graded materials design, processing and applications (1999)

    Google Scholar 

  10. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally graded materials: design, processing and applications (1999)

    Chapter  Google Scholar 

  11. A. Mortensen, S. Suresh, Fundamentals/Functionally Graded Materials. 10 M Commun. Ltd (1998)

    Google Scholar 

  12. A. Mortensen, S. Suresh, Functionally graded metals and metal-ceramic composites: Part I processing. Int. Mater. Rev. 40(6), 239–265

    Article  Google Scholar 

  13. C. Mattheck, S. Burkhardt, A new method of structural shape optimization based on biological growth. Int. J. Fat. 12(3), 185–190 (1990)

    Article  Google Scholar 

  14. J.C. Koch, The laws of bone architecture. Am. J Anat. 21, 177–198

    Article  Google Scholar 

  15. J. Gottron, K.A. Harries, Q. Xu, Creep behaviour of bamboo. Constr. Build. Mater. 66, 79–88 (2014)

    Article  Google Scholar 

  16. E.C.N. Silva, M.C. Walters, G.H. Paulino, Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J. Mater. Sci. 41(21), 6991–7004 (2006)

    Article  Google Scholar 

  17. P.K. Jain, P.M. Pandey, P.V.M. Rao, Tailoring material properties in layered manufacturing. Mater. Des. 31(7), 3490–3498 (2010)

    Article  Google Scholar 

  18. M. Srivastava, S. Maheshwari, T.K. Kundra, Virtual modelling and simulation of functionally graded material component using FDM technique. Mater. Today Proc. 2(4–5), 3471–3480 (2015)

    Article  Google Scholar 

  19. B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials. Mater. Sci. Eng. A 362, 81–105 (2003)

    Article  Google Scholar 

  20. G.R. Palmese, J.K. Sutter, M. Ivosevic, R. Knight, S.R. Kalidindi, Solid particle erosion resistance of thermally sprayed functionally graded coatings for polymer matrix composites, Surf. Coat. Technol. (2005)

    Google Scholar 

  21. G.E. Knoppers, J.W. Gunnink, J. Hout Van den, W.P. Wliet Van, The reality of functionally graded material products. TNO Sci. Ind. Netherl. 38–43

    Google Scholar 

  22. M. Naebe, K. Shirvanimoghaddam, Functionally graded materials: a review of fabrication and properties. Appl. Mater. Today 5, 223–245 (2016)

    Article  Google Scholar 

  23. S. Rathee, Maheshwari, A.N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing: a review, Mater. Manuf. Process. (2017)

    Google Scholar 

  24. B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials. Mater. Sci. Eng., A 362(1–2), 81–105 (2003)

    Article  Google Scholar 

  25. A.G. Arsha, E. Jayakumar, T.P.D. Rajan, V. Antony, B.C. Pai, Design and fabrication of functionally graded in-situ aluminium composites for automotive pistons. Mater. Des. 88, 1201–1209 (2015)

    Article  Google Scholar 

  26. Y. Watanabe, N. Yamanaka, Y. Fukui, Control of composition gradient in a metal-ceramic functionally graded material manufactured by the centrifugal method. Compos. Part A Appl. Sci. Manuf. 29(5), 595–601 (1998)

    Article  Google Scholar 

  27. T. Prabhu, Processing and properties evaluation of functionally continuous graded 7075 Al alloy/SiC composites. Arch. Civ. Mech. Eng. 17(1), 20–31 (2017)

    Article  Google Scholar 

  28. J.-G. Yeo, Y.-G. Jung, S.-C. Choi, Design and microstructure of ZrO2/SUS316 functionally graded materials by tape casting. Mater. Lett. 37(6), 304–311 (1998)

    Article  Google Scholar 

  29. D. Hotza, P. Greil, Review: aqueous tape casting of ceramic powders. Mater. Sci. Eng., A 202(1), 206–217 (1995)

    Article  Google Scholar 

  30. T. Katayama, S. Sukenaga, N. Saito, H. Kagata, K. in Nakashima, Fabrication of Al2O3-W functionally graded materials by slipcasting method, in 3rd International Congress on Ceramics, ICC 2011, IOP Conference Series: Materials Science and Engineering, Osaka, Japan, J. Andertová et al., Functional gradient alumina ceramic materials, vol. 97, 2011

    Article  Google Scholar 

  31. L. García-Gancedo, S.M. Olhero, F.J. Alves, J.M. Ferreira, C.E. Demoré, S. Cochran, T.W. Button, Application of gel-casting to the fabrication of 1–3 piezoelectric ceramic–polymer composites for high-frequency ultrasound devices. J. Micromech. Microeng. 22(12), 125001 (2012)

    Article  Google Scholar 

  32. C. Tallon, G.V. Franks, Recent trends in shape forming from colloidal processing: a review. J. Ceram. Soc. Japan 119(1387), 147–160 (2011)

    Article  Google Scholar 

  33. R. Slowak, S. Hoffmann, R. Liedtke, R. Waser, Functional graded high-K (Ba1−xSrx)TiO3 thin films for capacitor structures with low temperature coefficient. Integr. Ferroelectr. 24(1–4), 169–179 (1999)

    Article  Google Scholar 

  34. I. Shishkovsky, F. Missemer, I. Smurov, Direct metal deposition of functional graded structures in Ti–Al system. Phys. Procedia 39, 382–391 (2012)

    Article  Google Scholar 

  35. J.M. Wilson, Y.C. Shin, Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC. Surf. Coat. Technol. 207, 517–522 (2012)

    Article  Google Scholar 

  36. M. Sasaki, T. Hirai, Thermal fatigue resistance of CVD SiC/C functionally gradient material. J. Eur. Ceram. Soc. 14(3), 257–260 (1994)

    Article  Google Scholar 

  37. M. Kawase, T. Tago, M. Kurosawa, H. Utsumi, K. Hashimoto, Chemical vapor infiltration and deposition to produce a silicon carbide–carbon functionally gradient material. Chem. Eng. Sci. 54(15), 3327–3334 (1999)

    Article  Google Scholar 

  38. V. Cannillo, L. Lusvarghi, A. Sola, Production and characterization of plasma-sprayed TiO2–hydroxyapatite functionally graded coatings. J. Eur. Ceram. Soc. 28(11), 2161–2169 (2008)

    Article  Google Scholar 

  39. A.H. Pakseresht, A.H. Javadi, M. Nejati, K. Shirvanimoghaddam, E. Ghasali, R. Teimouri, Statistical analysis and multiobjective optimization of process parameters in plasma spraying of partially stabilized zirconia. Int. J. Adv. Manuf. Technol. 75(5), 739–753 (2014)

    Article  Google Scholar 

  40. S. Rathee, S. Maheshwari, A.N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing : A review. 0, 0–22

    Google Scholar 

  41. S. Rathee, S. Maheshwari, A.N. Siddiquee, M. Srivastava, Distribution of reinforcement particles in surface composite fabrication via friction stir processing : suitable strategy 0, 0–8

    Google Scholar 

  42. J.J. Sobczak, L. Drenchev, Metallic functionally graded materials: a specific class of advanced composites. J. Mater. Sci. Technol. 29(4), 297–316 (2013)

    Article  Google Scholar 

  43. A. Strojny-Nędza, K. Pietrzak, W. Węglewski, The influence of Al2O3 powder morphology on the properties of Cu-Al2O3 composites designed for functionally graded materials (FGM). J. Mater. Eng. Perform. 25(8), 3173–3184 (2016)

    Article  Google Scholar 

  44. J. Gandra et al., Functionally graded materials produced by friction stir processing. J. Mater. Process. Technol. 211(11), 1659–1668 (2011)

    Article  Google Scholar 

  45. A. Gebhardt, Understanding additive manufacturing (2012)

    Google Scholar 

  46. T. Wohlers, Additive manufacturing and 3D printing state of the industry (2012)

    Google Scholar 

  47. I. Gibson, D.W. Rosen, B. Stucker, Chapter 6 extrusion-based systems (2010)

    Chapter  Google Scholar 

  48. M. Srivastava, Some studies on layout of generative manufacturing processes for functional components, Delhi University (2015)

    Google Scholar 

  49. I. Shiota, Y. Miyamoto, Functionally graded materials 1996. Vasa (1997)

    Google Scholar 

  50. S. Palanivel, H. Sidhar, R.S. Mishra, Friction stir additive manufacturing: route to high structural performance. JOM 67(3), 616–621 (2015)

    Article  Google Scholar 

  51. S. Srivastava, M. Maheshwari, S. Kundra, T.K. Rathee, Commercially available layered manufacturing techniques : a review, 7(1), 31–46 (2016)

    Google Scholar 

  52. E.D. Herderick, Progress in additive manufacturing. JOM 67(3), 580–581 (2015)

    Article  Google Scholar 

  53. K. Senthilkumaran, P.M. Pandey, P.V.M. Rao, Influence of building strategies on the accuracy of parts in selective laser sintering. Mater. Des. 30(8), 2946–2954 (2009)

    Article  Google Scholar 

  54. A.S. Gogate, S.S. Pande, Intelligent layout planning for rapid prototyping. Int. J. Prod. Res. 46(20), 5607–5631 (2008)

    Article  Google Scholar 

  55. N. Oxman, S. Keating, E. Tsai, Functionally graded rapid prototyping (2008)

    Google Scholar 

  56. S. Keating, E. Tsai, N. Oxman, Biobeams: functionally graded rapid fabrication. in Mediated Matter, CRC Press (2016)

    Google Scholar 

  57. T. Tonyan, Mechanical behavior of cementitious foams (1991)

    Google Scholar 

  58. Y.S. Chan, G.H. Paulino, A.C. Fannjiang, Change of constitutive relations due to interaction between strain-gradient effect and material gradation. ASME J. Appl. Mech. 70, 7–9 (2005)

    MATH  Google Scholar 

  59. R.H.L.C.Y. Tang, C.P. Tsui, Y.Q. Guo, B. Gao, Damage modelling of graded Ti-based composites using repeated unit cell approach. Int. J. Mater. Sci. 2, 63–66 (2012)

    Google Scholar 

  60. P.G. Longmei Li, Q. Sun, C. Bellrehumeur, Composite modelling and analysis of FDM prototypes for design and fabrication of functionally graded parts. Rapid Prototyp. J. 4, 14–25 (1998)

    Article  Google Scholar 

  61. L. Lu, M. Chekroun, O. Abraham, V. Maupin, G. Villain, Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer. NDT E Int. 44(2), 169–177 (2011)

    Article  Google Scholar 

  62. A. Sadollah, A. Bahreininejad, Optimum functionally gradient materials for dental implant using simulated annealing. University of Malaya (2012)

    Google Scholar 

  63. W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications. Mater. Sci. Eng. A 362, 40–60 (2003)

    Article  Google Scholar 

  64. N. Ohata, S. Matsuo, F. Watari, Fabrication of functionally graded dental composite resin post and core by laser lithography and finite element analysis of its stress relaxation effect on tooth root. Dent. Mater J. 20(4), 257–274 (2001)

    Article  Google Scholar 

  65. F. Watari, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, T. Kawasaki, Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos Sci Technol. 64, 893–908 (2004)

    Article  Google Scholar 

  66. I. Bharti, N. Gupta, K.M. Gupta, Novel applications of functionally graded nano optoelectronic and thermoelectric materials. Int. J. Mater. Mech. Manuf. 1(3), 221–224 (2013)

    Google Scholar 

  67. T. Gürol, Finite element modeling of beams with functionally graded materials (2014)

    Google Scholar 

  68. E. Müller, Č. Drašar, J. Schilz, W.A. Kaysser, Functionally graded materials for sensor and energy applications. Mater. Sci. Eng. A 362, 17–30 (2003)

    Article  Google Scholar 

  69. M. Niino, K. Kisara, M. Mori, Feasibility study of FGM technology in space solar power systems (SPSS). Mater. Sci Forum 492, 163–168 (2005)

    Article  Google Scholar 

  70. T. Wallmersperger, C. Messe, D. Kliche, Modelling and simulation of heat transfer on FGM for hot structures in scramjet engines. J. Aircr. 6, 472–474 (1969)

    Article  Google Scholar 

  71. L. Marin, Numerical solution of the Cauchy problem for steady-state heat transfer in two dimensional functionally graded materials. Int. J. Solids Struct. 42, 4338–4351 (2005)

    Article  Google Scholar 

  72. J. Saifulnizan, Application of functionally graded materials for severe plastic deformation and smart materials (2012)

    Google Scholar 

  73. B. Woodward, M. Kashtalyan, Performance of functionally graded plates under localised transverse loading. Compos Struct (2012)

    Google Scholar 

  74. A. Kawasaki, R. Watanabe, Thermal fracture behavior of metal/ceramic functionally graded materials. Engng. Fract Mech. 69, 1713–1728 (2002)

    Article  Google Scholar 

  75. A. Xing, Z. Jun, H. Chuanzhen, Z. Jianhua, Development of an advanced ceramic tool material—functionally gradient cutting ceramics. Mater. Sci. Engng. A 248, 125–131 (1998)

    Article  Google Scholar 

  76. M. Malinina, T. Sammi, M.M. Gasik, Corrosion resistance of homogeneous and FGM coatings. Mater. Sci. Forum. 492–493, 305–310 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, M., Rathee, S., Maheshwari, S., Kundra, T.K. (2019). Design and Processing of Functionally Graded Material: Review and Current Status of Research. In: Kumar, L., Pandey, P., Wimpenny, D. (eds) 3D Printing and Additive Manufacturing Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0305-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0305-0_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0304-3

  • Online ISBN: 978-981-13-0305-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics