Skip to main content

Finite Element Analysis of Melt Pool Characteristics in Selective Laser Spot Melting on a Powder Layer

  • Chapter
  • First Online:
3D Printing and Additive Manufacturing Technologies
  • 6383 Accesses

Abstract

In this work, volume contraction of powder layer and convective flow in the melt pool during laser spot melting of Ti–6Al–4V powder layer are investigated using a transient two-dimensional finite element model. An algorithm, coupled with the finite element model, accounting for volume contraction due to melting of porous powder to a denser liquid is proposed, which is thereafter used to understand the role of natural and Marangoni convection on the melt pool behaviour. Results for the melt pool characteristics, such as melt pool geometry, melt pool fluid flow dynamics and thermal behaviour are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C p :

Specific heat capacity (J kg−1 K−1)

g :

Acceleration due to gravity (m s−2)

K :

Thermal conductivity (W m−1 K−1)

L :

Latent heat of fusion (J kg−1)

T :

Temperature (K)

\( \vec{u} \) :

Velocity vector (m s−1)

φ :

Porosity

P laser :

Laser power (W)

v g :

Velocity magnitude of Gaussian profile (m s−1)

k powder :

Thermal conductivity of powder layer (W m−1 K−1)

k solid :

Thermal conductivity of substrate (W m−1 K−1)

R :

Gaussian beam spot size (m)

h c :

Heat convection coefficient (W m2 K−1)

β T :

Coefficient of thermal expansion (K−1)

T solidus :

Solidus temperature (K)

T liquidus :

Liquidus temperature (K)

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

γ :

Surface tension (N m−1)

σ :

Stefan–Boltzmann constant (W m2 K−4)

solidus:

Solidus temperature

liquidus:

Liquidus temperature

References

  1. E.C. Santos, K. Osakada, M. Shiomi, Y. Kitamura, F. Abe, Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 218(7), 711–719 (2010)

    Article  Google Scholar 

  2. L. Mullen, R.C. Stamp, W.K. Brooks, E. Jones, C.J. Sutcliffe, Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 89(2), 325–334 (2009)

    Article  Google Scholar 

  3. Y. Shen, S. McKown, S. Tsopanos, C.J. Sutcliffe, R.A.W. Mines, W.J. Cantwell, The mechanical properties of sandwich structures based on metal lattice architectures. J. Sandwich Struct. Mater. (2009)

    Google Scholar 

  4. D. Gu, Y. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J. Alloy. Compd. 432(1), 163–166 (2007)

    Article  Google Scholar 

  5. S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing. Part I: Transp. Phenom. Model. Diagn. Add. Manuf. 8, 36–62 (2015)

    Google Scholar 

  6. N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, An overview of Direct Laser Deposition for additive manufacturing. Part II: Mech. Behav. Process Parameter Optim. Control Add. Manufact. 8, 12–35 (2015)

    Google Scholar 

  7. L.E. Loh, C.K. Chua, W.Y. Yeong, J. Song, M. Mapar, S.L. Sing, Z.H. Liu, D.Q. Zhang, Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. Int. J. Heat Mass Transf. 80, 288–300 (2015)

    Article  Google Scholar 

  8. F. Verhaeghe, T. Craeghs, J. Heulens, L. Pandelaers, A pragmatic model for selective laser melting with evaporation. Acta Mater. 57(20), 6006–6012 (2009)

    Article  Google Scholar 

  9. K. Antony, N. Arivazhagan, K. Senthilkumaran, Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J. Manuf. Process. 16(3), 345–355 (2014)

    Article  Google Scholar 

  10. E. Yasa, J. Deckers, J.P. Kruth, The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp. J. 17, 312–327 (2011)

    Article  Google Scholar 

  11. D. Lei, Y. ZhangFu, L. JianQiang, L. Jing, W. XiaoQiang, Surface tension of molten Al-Si alloy at temperatures ranging from 923 to 1123 K. Chin. Sci. Bull. 53(17), 2593–2598 (2008)

    Google Scholar 

  12. T. Chen, Y. Zhang, Numerical simulation of two-dimensional melting and resolidification of a two-component metal powder layer in selective laser sintering process. Numer. Heat Transf. Part A: Appl. 46(7), 633–649 (2004)

    Article  Google Scholar 

  13. Z. Fan, F. Liou, Numerical Modeling of the Additive Manufacturing (AM) Processes of Titanium Alloy, Titanium Alloys–Towards Achieving Enhanced Properties for Diversified Applications (2012)

    Google Scholar 

  14. G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park, Ohio, 1998)

    Google Scholar 

  15. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Woodhead Publishing, 2002)

    Chapter  Google Scholar 

  16. Y. Li, D. Gu, Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study. Add. Manuf. 1, 99–109 (2014)

    Google Scholar 

  17. M. Rombouts, L. Froyen, A.V. Gusarov, E.H. Bentefour, C. Glorieux, Light extinction in metallic powder beds: correlation with powder structure. J. Appl. Phys. 98(1), 013533 (2005)

    Article  Google Scholar 

  18. F. Thummler, R. Oberacker, An Introduction to Powder Metallurgy (Institute of Materials, 1993)

    Google Scholar 

  19. A. Kumar, P. Dutta, S. Sundarraj, M.J. Walker, Remelting of solid and its effect on macrosegregation during solidification. Numer. Heat Transf. Part A: Appl. 51(1), 59–83 (2007)

    Article  Google Scholar 

  20. N. Pathak, A. Kumar, A. Yadav, P. Dutta, Effects of mould filling on evolution of the solid–liquid interface during solidification. Appl. Therm. Eng. 29(17), 3669–3678 (2009)

    Article  Google Scholar 

  21. A. Kumar, S. Gu, H. Tabbara, S. Kamnis, Study of impingement of hollow ZrO2 droplets onto a substrate. Surf. Coat. Technol. 220, 164–169 (2013)

    Article  Google Scholar 

  22. A. Kumar, S. Gu, S. Kamnis, Simulation of impact of a hollow droplet on a flat surface. Appl. Phys. A 109(1), 101–109 (2012)

    Article  Google Scholar 

  23. V.K. Arghode, A. Kumar, S. Sundarraj, P. Dutta, Computational modeling of GMAW process for joining dissimilar aluminum alloys. Numer. Heat Transf. Part A: Appl. 53(4), 432–455 (2008)

    Article  Google Scholar 

  24. D. Dai, D. Gu, Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater. Des. 55, 482–491 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, A., Kumar, A. (2019). Finite Element Analysis of Melt Pool Characteristics in Selective Laser Spot Melting on a Powder Layer. In: Kumar, L., Pandey, P., Wimpenny, D. (eds) 3D Printing and Additive Manufacturing Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0305-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0305-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0304-3

  • Online ISBN: 978-981-13-0305-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics